Occlusion-Aware Real-Time Object Tracking

The online learning methods are popular for visual tracking because of their robust performance for most video sequences. However, the drifting problem caused by noisy updates is still a challenge for most highly adaptive online classifiers. In visual tracking, target object appearance variation, such as deformation and long-term occlusion, easily causes noisy updates. To overcome this problem, a new real-time occlusion-aware visual tracking algorithm is introduced. First, we learn a novel two-stage classifier with circulant structure with kernel, named integrated circulant structure kernels (ICSK). The first stage is applied for transition estimation and the second is used for scale estimation. The circulant structure makes our algorithm realize fast learning and detection. Then, the ICSK is used to detect the target without occlusion and build a classifier pool to save these classifiers with noisy updates. When the target is in heavy occlusion or after long-term occlusion, we redetect it using an optimal classifier selected from the classifier-pool according to an entropy minimization criterion. Extensive experimental results on the full benchmark demonstrate our real-time algorithm achieves better performance than state-of-the-art methods.

[1]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Nassir Navab,et al.  Multilayer Adaptive Linear Predictors for Real-Time Tracking , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Huchuan Lu,et al.  Visual Tracking via Probability Continuous Outlier Model , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Nanning Zheng,et al.  Constructing Adaptive Complex Cells for Robust Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[6]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[8]  Yuping Zhang,et al.  Linearization to Nonlinear Learning for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[9]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Horst Bischof,et al.  On-line Random Forests , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[11]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Fatih Murat Porikli,et al.  Saliency-aware geodesic video object segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[14]  Xuelong Li,et al.  Robust Video Object Cosegmentation , 2015, IEEE Transactions on Image Processing.

[15]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Xuelong Li,et al.  Lazy Random Walks for Superpixel Segmentation , 2014, IEEE Transactions on Image Processing.

[17]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[19]  Gang Wang,et al.  Exemplar based Deep Discriminative and Shareable Feature Learning for scene image classification , 2015, Pattern Recognit..

[20]  Xuelong Li,et al.  Intrinsic images using optimization , 2011, CVPR 2011.

[21]  Chang-Su Kim,et al.  Visual Tracking Using Pertinent Patch Selection and Masking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Huchuan Lu,et al.  Inverse Sparse Tracker With a Locally Weighted Distance Metric , 2015, IEEE Transactions on Image Processing.

[24]  Ling Shao,et al.  Visual Tracking Under Motion Blur , 2016, IEEE Transactions on Image Processing.

[25]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[26]  Xuelong Li,et al.  Depth-Aware Image Seam Carving , 2013, IEEE Transactions on Cybernetics.

[27]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  John R. Kender,et al.  Tracking Large-Scale Video Remix in Real-World Events , 2013, IEEE Transactions on Multimedia.

[31]  Bohyung Han,et al.  Learning occlusion with likelihoods for visual tracking , 2011, 2011 International Conference on Computer Vision.

[32]  Ling Shao,et al.  Generalized Pooling for Robust Object Tracking , 2016, IEEE Transactions on Image Processing.

[33]  Ling Shao,et al.  Discriminative Tracking Using Tensor Pooling , 2016, IEEE Transactions on Cybernetics.

[34]  Yoshua Bengio,et al.  Semi-supervised Learning by Entropy Minimization , 2004, CAP.

[35]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[36]  Ling Shao,et al.  Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors , 2015, IEEE Transactions on Multimedia.

[37]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Ling Shao,et al.  Consistent Video Saliency Using Local Gradient Flow Optimization and Global Refinement , 2015, IEEE Transactions on Image Processing.

[40]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[41]  Ling Shao,et al.  Sub-Markov Random Walk for Image Segmentation , 2016, IEEE Transactions on Image Processing.

[42]  Nanning Zheng,et al.  Description-Discrimination Collaborative Tracking , 2014, ECCV.

[43]  Xuelong Li,et al.  Interactive Segmentation Using Constrained Laplacian Optimization , 2014, IEEE Transactions on Circuits and Systems for Video Technology.