Aerodynamic and gravity gradient based attitude control for CubeSats in the presence of environmental and spacecraft uncertainties

Abstract In this paper, the problem of controlling the attitude of a CubeSat in low Earth orbit using only the environmental torques is considered. The CubeSat is equipped with a Drag Maneuvering Device (DMD) that enables the spacecraft to modulate its experienced aerodynamic and gravity gradient torques. An adaptive controller is designed to achieve attitude tracking of the spacecraft in the presence of uncertain parameters such as the atmospheric density, drag and lift coefficients, and the time-varying location of the Center of Mass (CoM). The proposed controller also accounts for modeling inaccuracy of the inertia matrix of the spacecraft. A Lyapunov-based analysis is used to prove that the quaternion-based attitude trajectory tracking error is uniformly ultimately bounded. The designed controller is also examined through numerical simulations for a spacecraft with time-varying uncertain drag, lift coefficients and CoM location parameters and the NRLMSISE-00 model for the atmospheric density.

[1]  C. W. Hall,et al.  Laws and Models , 1999 .

[2]  Riccardo Bevilacqua,et al.  Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation , 2008 .

[3]  Warren E. Dixon,et al.  CubeSat Adaptive Attitude Control with Uncertain Drag Coefficient and Atmospheric Density , 2021 .

[4]  Marcello Romano,et al.  Attitude Stabilization of Spacecraft in Very Low Earth Orbit by Center-Of-Mass Shifting , 2019, Front. Robot. AI.

[5]  M. Horsley,et al.  Small Satellite Rendezvous Using Differential Lift and Drag , 2013 .

[6]  Zhijun Cai,et al.  A sufficiently smooth projection operator , 2006, IEEE Transactions on Automatic Control.

[7]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[8]  Maruthi R. Akella,et al.  Adaptive Attitude-Tracking Control of Spacecraft with Uncertain Time-Varying Inertia Parameters , 2015 .

[9]  H. Schaub,et al.  Linear Coupled Attitude–Orbit Control Through Aerodynamic Drag , 2018 .

[10]  Marcin Pilinski,et al.  Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations , 2011 .

[11]  Nasa U. S. Standard Atmosphere , 2019 .

[12]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[13]  Jihe Wang,et al.  Roto-Translational Spacecraft Formation Control Using Aerodynamic Forces , 2017 .

[14]  James R. Wertz,et al.  Space mission engineering : the new SMAD , 2011 .

[15]  Riccardo Bevilacqua,et al.  Hardware and GNC solutions for controlled spacecraft re-entry using aerodynamic drag , 2019, Acta Astronautica.

[16]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[17]  Warren E. Dixon,et al.  Differential drag-based multiple spacecraft maneuvering and on-line parameter estimation using integral concurrent learning , 2020 .

[18]  W. Dixon,et al.  Spacecraft Attitude Regulation in Low Earth Orbit Using Natural Torques , 2019, 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC).

[19]  Rafael Fierro,et al.  Adaptive Control of a Quadrotor with Dynamic Changes in the Center of Gravity , 2011 .

[20]  U. Walter Spacecraft Attitude Dynamics , 2018 .

[21]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[22]  Riccardo Bevilacqua,et al.  Differential-drag-based roto-translational control for propellant-less spacecraft , 2015 .

[23]  P. Olver Nonlinear Systems , 2013 .

[24]  E. Bergmann,et al.  Orbital Formationkeeping with Differential Drag , 1987 .

[25]  Riccardo Bevilacqua,et al.  Drag Deorbit Device: A New Standard Reentry Actuator for CubeSats , 2019, Journal of Spacecraft and Rockets.

[26]  Dov M. Gabbay,et al.  Laws and Models of Science , 2004 .

[27]  Riccardo Bevilacqua,et al.  Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy , 2013 .

[28]  Ilya Kolmanovsky,et al.  Attitude Control of a 2U Cubesat by Magnetic and Air Drag Torques , 2017, IEEE Transactions on Control Systems Technology.

[29]  Warren E. Dixon,et al.  Adaptive control for differential drag-based rendezvous maneuvers with an unknown target , 2020 .

[30]  Danil Ivanov,et al.  Study of satellite formation flying control using differential lift and drag , 2018, Acta Astronautica.

[31]  Wolfgang Priester,et al.  TIME-DEPENDENT STRUCTURE OF THE UPPER ATMOSPHERE , 1962 .

[32]  Ricardo S. Sánchez Peña,et al.  Passive 3 axis attitude control of MSU-1 pico-satellite , 2005 .