Flora surrounding rice fields as a source of alternative prey for coccinellids feeding on the pests of rice

Coccinellids are effective predators and a key component of the predator guild in rice ecosystems. In order to enhance their efficacy, a study was undertaken to assess the seasonal movement of coccinellids into rice fields and the role of the surrounding flora on their colonization. The seasonal abundance of coccinellids and their prey was recorded on the rice crop and the surrounding flora at fortnightly intervals from 2012 to 2015. Coccinellid prey range was assessed using PAGE electrophoresis. The herbivorous insects associated with weeds were Aphis gossypii Glover, Aphis craccivora (Koch), Cicadulina bipunctata (Melichar), Schizaphis graminum (Rondani), Sitobion sp., Thaia oryzivora Ghauri and Zygina maculifrons Matsumura. Of the species of coccinellids recorded in rice fields, Harmonia octomaculata (Fabricius), Micraspis discolor (F.), Propylea dissecta (Mulsant), Coccinella transversalis Fabricius, Cheilomenes sexmaculata (Fabricius), Scymnus nubilus Mulsant and Brumoides suturalis (Fabricius) were also recorded on weeds. The esterase profiles indicated that the leafhoppers and aphids on the weeds were the prey of the coccinellids before they colonized the rice fields. The coccinellids recorded on the weeds showed bands corresponding to the insects present on the weeds. Beetles collected from rice fields had different bands, some of which corresponded to the green leafhopper (GLH) Nephotettix virescens Distant, the brown planthopper (BPH) Nilaparvata lugens Stal and white backed planthopper (WBPH) Sogatella furcifera Hovarth infesting rice. In addition, some bands corresponded to hoppers and aphids that were present on the surrounding flora. The results indicate the importance of surrounding flora in the conservation and colonization of rice fields by coccinellids.

[1]  P. Tixier,et al.  Response of pest control by generalist predators to local‐scale plant diversity: a meta‐analysis , 2016, Ecology and evolution.

[2]  F. Horgan,et al.  Applying Ecological Engineering for Sustainable and Resilient Rice Production Systems , 2016 .

[3]  C. Shanker,et al.  Functional significance of Micraspis discolor (F.) (Coccinellidae: Coleoptera) in rice ecosystem , 2013 .

[4]  Jaime Tapia,et al.  Movimiento entre cultivos y malezas: refugios temporales para insectos afidófagos en Chile Central , 2013 .

[5]  A. Grez,et al.  Movement between crops and weeds: temporal refuges for aphidophagous insects in Central Chile , 2013 .

[6]  G. Katti,et al.  Selection of flowering forbs for conserving natural enemies in rice fields , 2013 .

[7]  C. Lavigne,et al.  Predation by generalist predators on the codling moth versus a closely‐related emerging pest the oriental fruit moth: a molecular analysis , 2012 .

[8]  F. Wäckers,et al.  Pick and Mix: Selecting Flowering Plants to Meet the Requirements of Target Biological Control Insects , 2012 .

[9]  I. Hodek,et al.  5. Food Relationships , 2012 .

[10]  J. Harwood,et al.  Quantifying the Impact of Coccinellids on their Prey , 2012 .

[11]  I. Hodek,et al.  Ecology and behaviour of the ladybird beetles (Coccinellidae) , 2012 .

[12]  P. Taberlet,et al.  Who is eating what: diet assessment using next generation sequencing , 2012, Molecular ecology.

[13]  Kong Luen Heong,et al.  Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae) pests and prospects for enhancing biological control by ecological engineering , 2011 .

[14]  R. Muhamad,et al.  Population Fluctuations of Brown Plant Hopper Nilaparvata lugens Stal. And White Backed Plant Hopper Sogatella furcifera Horvath on Rice , 2011 .

[15]  A. Espra,et al.  Gut Content Analysis of Selected Commercially Important Species of Coral Reef Fish in the Southwest Part of Iligan Bay, Northern Mindanao, Phillippines , 2011 .

[16]  E. L. Aguiar-Menezes,et al.  Diversidade de Coccinellidae (Coleoptera) em plantas aromáticas (Apiaceae) como sítios de sobrevivência e reprodução em sistema agroecológico , 2010 .

[17]  E. L. Aguiar-Menezes,et al.  [Diversity of Coccinellidae (Coleoptera) using aromatic plants (Apiaceae) as survival and reproduction sites in agroecological system]. , 2010, Neotropical entomology.

[18]  Donald C. Weber,et al.  Assessing the trophic ecology of the Coccinellidae: Their roles as predators and as prey , 2009 .

[19]  C. S. Kumar,et al.  Gut content analysis of spiders in coffee ecosystem. , 2009 .

[20]  B. Rekha,et al.  Diversity of coccinellids in cereals, pulses, vegetables and in weeded and partially weeded rice-cowpea ecosystems in Madurai District of Tamil Nadu. , 2009 .

[21]  J. Harwood,et al.  Quantifying aphid predation rates of generalist predators in the field , 2005 .

[22]  M. Dicke,et al.  Prey preference of the phytoseiid miteTyphlodromus pyri 2. Electrophoretic diet analysis , 1988, Experimental & Applied Acarology.

[23]  M. Usher,et al.  Description and quantification of field attack rates by predatory mites: An example using an electrophoresis method with a species of Antarctic mite , 1987, Oecologia.

[24]  M. Traugott The prey spectrum of larval and adult Cantharis species in arable land: An electrophoretic approach , 2003 .

[25]  M. Greenstone,et al.  Can generalist predators be effective biocontrol agents? , 2003, Annual review of entomology.

[26]  Ç. Şengonca,et al.  Auswirkungen dreier Wildkrautarten als Begleitpflanzungen in einem Kohlrabifeld auf räuberische Coccinelliden und Blattläuse , 2002, Gesunde Pflanzen.

[27]  Joon-Ho Lee,et al.  1 USE OF SPIDERS AS NATURAL ENEMIES TO CONTROL RICE PESTS IN KOREA , 2002 .

[28]  G. Poppy,et al.  Distribution and abundance of aphidophagous hoverflies (Diptera: Syrphidae) in wildflower patches and field margin habitats , 2001 .

[29]  A. Grez,et al.  Effect of Plant Patch Shape and Surrounding Vegetation on the Dynamics of Predatory Coccinellids and Their Prey Brevicoryne brassicae (Hemiptera: Aphididae) , 2000 .

[30]  J. Peña,et al.  Gut content analysis of three species of sac spiders by electrophoresis , 2000 .

[31]  W. Nentwig,et al.  Olfactory orientation of the seven-spot ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae): attraction of adults to plants and conspecific females. , 2000 .

[32]  Stephen D. Wratten,et al.  Success in Conservation Biological Control of Arthropods , 2000 .

[33]  D. Landis,et al.  Habitat management to conserve natural enemies of arthropod pests in agriculture. , 2000, Annual review of entomology.

[34]  G. Wilde,et al.  ELECTROPHORETIC ANALYSIS OF ORIUS INSIDIOSUS (HEMIPTERA : ANTHOCORIDAE) FEEDING HABITS IN FIELD CORN , 1998 .

[35]  P. Yurista,et al.  Diet composition from allozyme analysis in the predatory cladoceran Bythotrephes cederstroemi , 1995 .

[36]  A. Schmid Investigations on the attractiveness of agricultural weeds to aphidophagous ladybirds (Coleoptera, Coccinellidae). , 1992 .

[37]  P. Giller The natural diet of the Notonectidae: field trials using electrophoresis , 1986 .

[38]  P. Giller Predator gut state and prey detectability using electrophoretic analysis of gut contents , 1984 .

[39]  P. Giller The natural diets of waterbugs (Hemiptera‐Heteroptera): electrophoresis as a potential method of analysis , 1982 .

[40]  R. A. Murray,et al.  A rapid technique for analysing diets of invertebrate predators by electrophoresis , 1978 .

[41]  E S Hobson,et al.  Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii , 1974 .