NEW FRONTIERS IN APPLIED PROBABILITY

For a random walk with both downward and upward jumps (increments), the joint distribution of the exit time across a given level and the undershoot or overshoot at crossing is determined through its generating function, when assuming that the distribution of the jump in the direction making the exit possible has a Laplace transform which is a rational function. The expected exit time is also determined and the paper concludes with exact distribution results concerning exits from bounded intervals. The proofs use simple martingale techniques together with some classical expansions of polynomials and Rouche’s theorem from complex function theory.

[1]  Swapna S. Gokhale,et al.  Analytical Models for Architecture-Based Software Reliability Prediction: A Unification Framework , 2006, IEEE Transactions on Reliability.

[2]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[3]  T. Kadankova Two-boundary problems for a random walk with negative geometric jumps , 2004 .

[4]  A. V. D. Liefvoort An algebraic approach to the steady state solution of g/g/1//n type loops , 1982 .

[5]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[6]  Sidney I. Resnick,et al.  Aggregation of rapidly varying risks and asymptotic independence , 2009, Advances in Applied Probability.

[7]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[8]  Marjorie G. Hahn,et al.  Limit theorems for random sets: An application of probability in banach space results , 1983 .

[9]  Andreas E. Kyprianou,et al.  Meromorphic Lévy processes and their fluctuation identities. , 2010, 1004.4671.

[10]  M. Pistorius,et al.  ON MAXIMA AND LADDER PROCESSES FOR A DENSE CLASS OF LEVY PROCESS , 2005 .

[11]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[12]  A. C. Davison,et al.  Estimating value-at-risk: a point process approach , 2005 .

[13]  X. Sheldon Lin,et al.  The compound Poisson risk model with a threshold dividend strategy , 2006 .

[14]  F. Spitzer Principles Of Random Walk , 1966 .

[15]  Pierre Dupont,et al.  Sequence Discrimination Using Phase-Type Distributions , 2006, ECML.

[16]  Kishor S. Trivedi,et al.  The Completion Time of Programs on Processors Subject to Failure and Repair , 1993, IEEE Trans. Computers.

[17]  I. Molchanov Theory of Random Sets , 2005 .

[18]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[19]  Lester Lipsky,et al.  On the completion time distribution for tasks that must restart from the beginning if a failure occurs , 2006, PERV.

[20]  H. Albrecher,et al.  Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables , 2009 .

[21]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[23]  Nam Kyoo Boots,et al.  Simulating ruin probabilities in insurance risk processes with subexponential claims , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[24]  Predrag R. Jelenkovic,et al.  Can Retransmissions of Superexponential Documents Cause Subexponential Delays? , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[25]  M. Yor,et al.  Exponential functionals of Levy processes , 2005, math/0511265.

[26]  P. Brémaud,et al.  STABILITY OF NONLINEAR HAWKES PROCESSES , 1996 .

[27]  Predrag R. Jelenkovic,et al.  Implicit Renewal Theory and Power Tails on Trees , 2010, Advances in Applied Probability.

[28]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[29]  Thomas Mikosch,et al.  Non-Life Insurance Mathematics , 2004 .

[30]  Lester Lipsky,et al.  Asymptotic Behavior of Total Times for Jobs That Must Start Over if a Failure Occurs , 2007, Math. Oper. Res..

[31]  Ivo J. B. F. Adan,et al.  The G/M/1 queue revisited , 2005, Math. Methods Oper. Res..

[32]  Kaj Madsen,et al.  ROBUST SUBROUTINES FOR NON-LINEAR OPTIMIZATION , 2002 .

[33]  Bert Zwart,et al.  Tail asymptotics for exponential function-als of L evy processes , 2006 .

[34]  H. Akaike A new look at the statistical model identification , 1974 .

[35]  Ole E. Barndorff-Nielsen,et al.  Brownian Semistationary Processes and Volatility/Intermittency , 2009 .

[36]  Hansjörg Albrecher,et al.  Tail asymptotics for the sum of two heavy-tailed dependent risks , 2006 .

[37]  Dirk P. Kroese,et al.  HEAVY TAILS, IMPORTANCE SAMPLING AND CROSS–ENTROPY , 2005 .

[38]  V. Kadankov,et al.  On the distribution of the time of the first exit from an interval and the value of a jump over the boundary for processes with independent increments and random walks , 2005 .

[39]  Dirk P. Kroese,et al.  The Transform Likelihood Ratio Method for Rare Event Simulation with Heavy Tails , 2004, Queueing Syst. Theory Appl..

[40]  R. Cerf Large deviations for sums of i.i.d. random compact sets , 1999 .

[41]  Jose H. Blanchet,et al.  Efficient rare event simulation for heavy-tailed compound sums , 2011, TOMC.

[42]  Jostein Paulsen Sharp conditions for certain ruin in a risk process with stochastic return on investments , 1998 .

[43]  O. Barndorff-Nielsen,et al.  Lévy-based spatial-temporal modelling, with applications to turbulence , 2004 .

[44]  Sandeep Juneja,et al.  Efficient simulation of tail probabilities of sums of correlated lognormals , 2011, Ann. Oper. Res..

[45]  A. Nagaev Integral Limit Theorems Taking Large Deviations Into Account When Cramér’s Condition Does Not Hold. II , 1969 .

[46]  I. I. Ezhov,et al.  Two-boundary problems for a random walk , 2007 .

[47]  S. V. Nagaev,et al.  Large Deviations of Sums of Independent Random Variables , 1979 .

[48]  Hans U. Gerber,et al.  On Optimal Dividend Strategies In The Compound Poisson Model , 2006 .

[49]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[50]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .

[51]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[52]  D. Siegmund,et al.  A diffusion process and its applications to detecting a change in the drift of Brownian motion , 1984 .

[53]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[54]  Sandeep Juneja,et al.  Simulating heavy tailed processes using delayed hazard rate twisting , 1999, WSC '99.

[55]  A. Gut Stopped Random Walks , 1987 .

[56]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[57]  Martin Jacobsen,et al.  The time to ruin for a class of Markov additive risk process with two-sided jumps , 2005, Advances in Applied Probability.

[58]  Addendum: Integral Limit Theorems Taking Large Deviations into Account when Cramer’s Condition Does Not Hold , 1969 .

[59]  Andrew Richards,et al.  On Sums of Conditionally Independent Subexponential Random Variables , 2010, Math. Oper. Res..

[60]  David Perry,et al.  The idle period of the finite G/M/1 queue with an interpretation in risk theory , 2010, Queueing Syst. Theory Appl..

[61]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[62]  Martin Jacobsen,et al.  Exit times for a class of piecewise exponential Markov processes with two-sided jumps , 2007 .

[63]  Ernesto Mordecki,et al.  Ruin Probabilities for Levy Processes with Mixed-Exponential Negative Jumps , 2004 .

[64]  Yacine Ait-Sahalia,et al.  Modeling Financial Contagion Using Mutually Exciting Jump Processes , 2010 .

[65]  Dirk P. Kroese,et al.  Rare-event probability estimation with conditional Monte Carlo , 2011, Ann. Oper. Res..

[66]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[67]  W. Vervaat On a stochastic difference equation and a representation of non–negative infinitely divisible random variables , 1979, Advances in Applied Probability.

[68]  Taylor L. Booth,et al.  Software performance modeling using computation structures , 1975, IEEE Transactions on Software Engineering.

[69]  Wolfgang Stadje,et al.  Busy period analysis for M/G/1 and G/M/1 type queues with restricted accessibility , 2000, Oper. Res. Lett..

[70]  S. Asmussen,et al.  Rare events simulation for heavy-tailed distributions , 2000 .

[71]  Ernesto Mordecki,et al.  WIENER-HOPF FACTORIZATION FOR LEVY PROCESSES HAVING POSITIVE JUMPS WITH RATIONAL TRANSFORMS , 2005 .

[72]  H. Nyrhinen,et al.  Finite and infinite time ruin probabilities in a stochastic economic environment , 2001 .

[73]  M. Jacobsen Martingales and the distribution of the time to ruin , 2003 .

[74]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[75]  James Allen Fill,et al.  Perfect Simulation of Vervaat Perpetuities , 2009 .

[76]  V. Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[77]  Peter W. Glynn,et al.  Asymptotic robustness of estimators in rare-event simulation , 2007, TOMC.

[78]  Y. Ogata Space-Time Point-Process Models for Earthquake Occurrences , 1998 .

[79]  A. Cumani On the canonical representation of homogeneous markov processes modelling failure - time distributions , 1982 .

[80]  Peter G. Taylor,et al.  Decay rates for some quasi-birth-and-death processes with phase-dependent transition rates , 2011, Journal of Applied Probability.

[81]  W. Kendall Geometric ergodicity and perfect simulation , 2004, math/0410012.

[82]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[83]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[84]  Peter W. Glynn,et al.  How to Deal with the Curse of Dimensionality of Likelihood Ratios in Monte Carlo Simulation , 2009 .

[85]  P. Glynn,et al.  Simulating the maximum of a random walk , 2000 .

[86]  Dirk P. Kroese,et al.  Improved cross-entropy method for estimation , 2011, Statistics and Computing.

[87]  D. Oakes Direct calculation of the information matrix via the EM , 1999 .

[88]  F. Papangelou Integrability of expected increments of point processes and a related random change of scale , 1972 .

[89]  Jostein Paulsen,et al.  Present value distributions with applications to ruin theory and stochastic equations , 1997 .

[90]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[91]  D. Aldous,et al.  A survey of max-type recursive distributional equations , 2004, math/0401388.

[92]  S. Asmussen,et al.  Simulation of Ruin Probabilities for Subexponential Claims , 1997, ASTIN Bulletin.

[93]  Charles M. Goldie,et al.  Perpetuities and Random Equations , 1994 .

[94]  P. Meyer,et al.  Demonstration simplifiee d'un theoreme de Knight , 1971 .

[95]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[96]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[97]  B. F. Nielsen,et al.  Estimation of Interrupted Poisson Process Parameters from Counts , 2005 .

[98]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[99]  L. Devroye,et al.  Density approximation and exact simulation of random variables that are solutions of fixed-point equations , 2002, Advances in Applied Probability.

[100]  Gennady Samorodnitsky,et al.  Functional large deviations for multivariate regularly varying random walks , 2005, math/0602460.

[101]  P. Glynn,et al.  Efficient rare-event simulation for the maximum of heavy-tailed random walks , 2008, 0808.2731.

[102]  Gordon E. Willmot,et al.  The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function , 2003 .

[103]  Yosihiko Ogata,et al.  Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes , 1988 .

[104]  J. Michael Harrison,et al.  Ruin problems with compounding assets , 1977 .

[105]  N. U. Prabhu,et al.  Stochastic Storage Processes , 1980 .

[106]  Offer Kella On Growth-Collapse Processes with Stationary Structure and Their Shot-Noise Counterparts , 2009, Journal of Applied Probability.

[107]  Søren Asmussen,et al.  Ruin probabilities expressed in terms of storage processes , 1988, Advances in Applied Probability.

[108]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[109]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[110]  José Garrido,et al.  On a class of renewal risk models with a constant dividend barrier , 2004 .

[111]  George Weiss,et al.  The Passage Problem for a Stationary Markov Chain , 1961 .

[112]  Søren Asmussen,et al.  Asymptotics of sums of lognormal random variables with Gaussian copula , 2008 .

[113]  D. Husak On the Exit of One Class of Random Walks from an Interval , 2005 .

[114]  David Oakes,et al.  The Markovian self-exciting process , 1975, Journal of Applied Probability.

[115]  Dirk P. Kroese,et al.  Efficient estimation of large portfolio loss probabilities in t-copula models , 2010, Eur. J. Oper. Res..

[116]  Henrik Hult,et al.  REGULAR VARIATION FOR MEASURES ON METRIC SPACES , 2006 .

[117]  J. Hoffmann-jorgensen,et al.  Probability with a View Toward Statistics , 1994 .

[118]  Lester Lipsky,et al.  Queueing Theory: A Linear Algebraic Approach , 1992 .

[119]  P. Brémaud Point Processes and Queues , 1981 .

[120]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[121]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[122]  Stephen B. Connor,et al.  Perfect simulation for a class of positive recurrent Markov chains. Correction. , 2006, math/0601174.

[123]  Shinzo Watanabe On discontinuous additive functionals and Lévy measures of a Markov process , 1964 .

[124]  Dirk P. Kroese,et al.  Improved algorithms for rare event simulation with heavy tails , 2006, Advances in Applied Probability.

[125]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[126]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[127]  R. Rubinstein The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling , 2009 .

[128]  Gennady Samorodnitsky,et al.  Large deviations for Minkowski sums of heavy-tailed generally non-convex random compact sets , 2010 .

[129]  Sandeep Juneja,et al.  Estimating tail probabilities of heavy tailed distributions with asymptotically zero relative error , 2007, Queueing Syst. Theory Appl..

[130]  J. H. B. Kemperman A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY' , 1963 .