MODELING AND EXPERIMENTAL VALIDATION TO ESTIMATE THE ENERGY BALANCE FOR A POULTRY HOUSE WITH MISTING COOLING

The aim of this study was to develop and validate a simplified steady state mathematical model to predict temperature distribution in a commercial poultry house equipped with a negative pressure ventilation system and internal misting. The model was validated with data obtained experimentally during the summer. For external temperature conditions of 26, 27, and 29 °C, the best combinations of energy generated by misting (qmisting), ventilation rate (V), global heat loss coefficient for the roof (Ut), and global heat loss coefficient for the wall (Upar) were encountered to maintain the majority of the installation with temperatures within the optimal thermal comfort range for the birds (24 to 29 °C).

[1]  Louis D. Albright,et al.  Environment Control for Animals and Plants , 1991 .

[2]  G. Campbell,et al.  An Introduction to Environmental Biophysics , 1977 .

[3]  Michael B. Timmons,et al.  Predictive Model of Laying Hen Performance to Air Temperature and Evaporative Cooling , 1988 .

[4]  Fernando da Costa Baêta,et al.  Sistemas de resfriamento evaporativo e o desempenho de frangos de corte , 2001 .

[5]  Søren Pedersen,et al.  Heat and Moisture Production of Broilers kept on Straw Bedding , 2000 .

[6]  Ilda de Fátima Ferreira Tinôco,et al.  Evaluation of a simplified model for estimating energy balance in broilers production housing , 2007 .

[7]  Iff Tinôco,et al.  Avicultura Industrial: Novos Conceitos de Materiais, Concepções e Técnicas Construtivas Disponíveis para Galpões Avícolas Brasileiros , 2001 .

[8]  K. Cooper,et al.  A Thermal Balance Model for Livestock Buildings for use in Climate Change Studies , 1998 .

[9]  Metin Olgun,et al.  Determining of heat balance design criteria for laying hen houses under continental climate conditions , 2007 .

[10]  Da-Wen Sun,et al.  Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review. , 2007, Bioresource technology.

[11]  Burgess,et al.  The preferences of laying hens for different concentrations of atmospheric ammonia. , 2000, Applied animal behaviour science.

[12]  Sudipto Ghosh,et al.  Modeling and analysis of a fan–pad ventilated floricultural greenhouse , 2007 .

[13]  Douglas G. Overhults,et al.  Regional variation in temperature humidity index for poultry housing , 1995 .

[14]  D. J. Moura,et al.  Temperatura corporal de frangos de corte em diferentes sistemas de climatização , 2008 .

[15]  Victoria Blanes-Vidal,et al.  Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building , 2008 .

[16]  Leandro S. Oliveira,et al.  NUMERICAL STUDY OF APPLE COOLING IN TANDEM ARRANGEMENT , 2011 .

[17]  G. N. Tiwari,et al.  Modeling and optimal design of evaporative cooling system in controlled environment greenhouse , 2002 .