Large-Scale Computational Modeling of Genetic Regulatory Networks

The perhaps most important signaling network in living cells is constitutedby the interactions of proteins with the genome – the regulatory geneticnetwork of the cell. From a system-level point of view, the variousinteractions and control loops, which form a genetic network, represent thebasis upon which the vast complexity and flexibility of life processesemerges. Here we provide a review over some efforts towards gaining aquantitative understanding of regulatory genetic networks by means of largescale computational models. After a brief description of the biologicalprinciples of gene regulation, we summarize recent advances in massivegene-expression measurements by DNA-microarrays, which form the to date mostpowerful data basis for models of genetic networks. One class of models suchas reaction-diffusion networks and nonlinear dynamical descriptions arebiased towards using explicit molecular biological knowledge. A secondclass, centered around machine learning approaches like neural networks andBayesian networks, adopts a more data-driven approach and thereby makesmassive use of the novel gene expression measurement techniques.

[1]  Reimar Hofmann Lernen der Struktur nichtlinearer Abhängigkeiten mit graphischen Modellen , 2000 .

[2]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[3]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[4]  S. Kauffman Gene regulation networks: a theory for their global structure and behaviors. , 1971, Current topics in developmental biology.

[5]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[6]  L. K. Buehler,et al.  Normalizing DNA microarray data. , 2002, Current issues in molecular biology.

[7]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[8]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[9]  Mark Schena,et al.  Microarray Biochip Technology , 2000 .

[10]  J. Yates Mass spectrometry and the age of the proteome. , 1998, Journal of mass spectrometry : JMS.

[11]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[12]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[13]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[14]  E. Davidson,et al.  Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. , 2001, Development.

[15]  H. Iba,et al.  Inferring a system of differential equations for a gene regulatory network by using genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[16]  Jesús Angulo,et al.  Automatic analysis of DNA microarray images using mathematical morphology , 2003, Bioinform..

[17]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[19]  P. D’haeseleer,et al.  Mining the gene expression matrix: inferring gene relationships from large scale gene expression data , 1998 .

[20]  Nir Friedman,et al.  Learning Belief Networks in the Presence of Missing Values and Hidden Variables , 1997, ICML.

[21]  S. Fields,et al.  Protein analysis on a proteomic scale , 2003, Nature.

[22]  D S Latchman,et al.  Eukaryotic transcription factors. , 1990, The Biochemical journal.

[23]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Werner Dubitzky,et al.  Multiclass Cancer Classification Using Gene Expression Profiling and Probabilistic Neural Networks , 2002, Pacific Symposium on Biocomputing.

[25]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[26]  Zlatko Trajanoski,et al.  Analyzing Gene-Expression Data with Bayesian Networks , 2002 .

[27]  Jan Vijg,et al.  Large genome rearrangements as a primary cause of aging , 2002, Mechanisms of Ageing and Development.

[28]  B L Strehler,et al.  Deletional mutations are the basic cause of aging: historical perspectives. , 1995, Mutation research.

[29]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[30]  Harald Steck,et al.  Constraint-based structural learning in Bayesian networks using finite data sets , 2001 .

[31]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[32]  V. Bohr,et al.  DNA damage and its processing. Relation to human disease , 2002, Journal of Inherited Metabolic Disease.

[33]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[34]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[35]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[36]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[37]  Terrence J. Sejnowski,et al.  Graphical Models: Foundations of Neural Computation , 2001, Pattern Anal. Appl..

[38]  M Kato,et al.  Inferring genetic networks from DNA microarray data by multiple regression analysis. , 2000, Genome informatics. Workshop on Genome Informatics.

[39]  D. Slonim From patterns to pathways: gene expression data analysis comes of age , 2002, Nature Genetics.

[40]  R. Somogyi,et al.  The gene expression matrix: towards the extraction of genetic network architectures , 1997 .

[41]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[42]  Richard E. Korf,et al.  Learning bayesian networks from data , 1996 .

[43]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[44]  S. Hanash Disease proteomics : Proteomics , 2003 .

[45]  Martin Stetter,et al.  Exploration of Cortical Function , 2002, Springer Netherlands.

[46]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[47]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[48]  Laxmi Parida Pattern Discovery in Biomolecular Data: Tools, Techniques and Applications , 1999 .

[49]  Volker Tresp,et al.  Nonlinear Time-Series Prediction with Missing and Noisy Data , 1998, Neural Computation.

[50]  Werner Dubitzky,et al.  A Practical Approach to Microarray Data Analysis , 2003, Springer US.

[51]  Nir Friedman,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[52]  G. W. Hatfield,et al.  DNA microarrays and gene expression , 2002 .

[53]  M. Degroot Optimal Statistical Decisions , 1970 .

[54]  Hidde de Jong,et al.  Qualitative Simulation of Genetic Regulatory Networks: Method and Application , 2001, IJCAI.

[55]  Gregory R. Grant,et al.  Bioinformatics - The Machine Learning Approach , 2000, Comput. Chem..

[56]  Sudhir Kumar,et al.  Genomic clocks and evolutionary timescales. , 2003, Trends in genetics : TIG.

[57]  Mathäus Dejori,et al.  Bayesian Inference of Genetic Networks from Gene-Expression-Data: Convergence and Reliability , 2003, IC-AI.

[58]  S. Hanash,et al.  Disease proteomics , 2003, Nature.

[59]  G. Yarrington Molecular Cell Biology , 1987, The Yale Journal of Biology and Medicine.

[60]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..