Folded-Slot and FDTD Analysis of CPW-Fed Multiple-Slot Antennas on Thin Substrates

Folded slot antennas are attractive for active arrays due to relatively large bandwidth, fabrication simplicity, and ease of integration with devices. Currently, there is little design information for these antennas, especially on thin substrates. In this paper, the finite-difference time-domain (FDTD) method is applied to the analysis of CPW-fed folded-slot antennas. The paper describes the problems encountered in the analysis, com- pares the theoretical results and measured data, and provides some design information for folded slots. In addition, the paper explores the manipulation of input impedance through the use of additional slots, yielding antennas with a broadband 50 R input impedance.

[1]  K. Mei,et al.  Full-wave analysis of coplanar waveguide and slotline using the time-domain finite-difference method , 1989 .

[2]  P. A. Tirkas,et al.  Finite-difference time-domain method for antenna radiation , 1992 .

[3]  D. Rutledge,et al.  A grid amplifier , 1991 .

[4]  C. Durney,et al.  Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements , 1992 .

[5]  G.M. Rebeiz,et al.  A quasi-optical amplifier , 1993, IEEE Microwave and Guided Wave Letters.

[6]  Gabriel M. Rebeiz,et al.  Single and double folded-slot antennas on semi-infinite substrates , 1995 .

[7]  E. M. Jones,et al.  Microwave Filters, Impedance-Matching Networks, and Coupling Structures , 1980 .

[8]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[9]  Zoya Popovic,et al.  Planar MESFET transmission wave amplifier , 1993 .

[10]  D. Katz,et al.  Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes , 1994, IEEE Microwave and Guided Wave Letters.

[11]  Nihad Dib,et al.  A folded slot antenna for planar quasi-optical mixer applications , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[12]  Zhang Xiaolei,et al.  Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities , 1988 .

[13]  H. Tsai,et al.  Planar amplifier array with improved bandwidth using folded-slots , 1994, IEEE Microwave and Guided Wave Letters.

[14]  N. Kolias,et al.  A microstrip-based unit cell for quasi-optical amplifier arrays , 1993, IEEE Microwave and Guided Wave Letters.

[15]  A. Reineix,et al.  Analysis of microstrip patch antennas using finite difference time domain method , 1989 .

[16]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[17]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[18]  D. M. Sheen,et al.  Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits , 1990 .

[19]  Robert A. York,et al.  Polarisation-rotating quasioptical reflection amplifier cell , 1993 .

[20]  David B. Rutledge,et al.  A 100-element HBT grid amplifier , 1993 .

[21]  A. Taflove,et al.  Radar Cross Section of General Three-Dimensional Scatterers , 1983, IEEE Transactions on Electromagnetic Compatibility.

[22]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[23]  T. Itoh,et al.  FDTD analysis of an active antenna , 1993, IEEE Microwave and Guided Wave Letters.