Functors of liftings of projective schemes

Abstract A classical approach to investigate a closed projective scheme W consists of considering a general hyperplane section of W, which inherits many properties of W. The inverse problem that consists in finding a scheme W starting from a possible hyperplane section Y is called a lifting problem, and every such scheme W is called a lifting of Y. Investigations in this topic can produce methods to obtain schemes with specific properties. For example, any smooth point for Y is smooth also for W. We characterize all the liftings of Y with a given Hilbert polynomial by a parameter scheme that is obtained by gluing suitable affine open subschemes in a Hilbert scheme and is described through the functor it represents. We use constructive methods from Grobner and marked bases theories. Furthermore, by classical tools we obtain an analogous result for equidimensional liftings. Examples of explicit computations are provided.

[1]  Mathias Lederer,et al.  Gr\"obner strata in the Hilbert scheme of points , 2009, 0907.0302.

[2]  Paolo Lella,et al.  On the functoriality of marked families , 2013, 1307.7657.

[3]  Werner M. Seiler A combinatorial approach to involution and δ-regularity II: structure analysis of polynomial modules with pommaret bases , 2009, Applicable Algebra in Engineering, Communication and Computing.

[4]  Margherita Roggero,et al.  Marked bases over quasi-stable modules , 2015 .

[5]  Michael Stillman,et al.  A criterion for detectingm-regularity , 1987 .

[6]  Alexander Grothendieck,et al.  Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert , 1961 .

[7]  Angelo Vistoli An introduction to Grothendieck topologies, fibered categories and descent theory , 2004 .

[8]  D. Gregory,et al.  Monomial ideals and points in projective space , 1986 .

[9]  Robin Hartshorne,et al.  Connectedness of the Hilbert scheme , 1966 .

[10]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[11]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[12]  Francesca Cioffi,et al.  The scheme of liftings and applications , 2013, 1312.7700.

[13]  S. A. Strømme Elementary introduction to representable functors and Hilbert schemes , 1996 .

[14]  Paolo Lella,et al.  Rational components of Hilbert schemes , 2009, 0903.1029.

[15]  Werner M. Seiler,et al.  A combinatorial approach to involution and δ-regularity I: involutive bases in polynomial algebras of solvable type , 2002, Applicable Algebra in Engineering, Communication and Computing.

[16]  Francesca Cioffi,et al.  Upgraded methods for the effective computation of marked schemes on a strongly stable ideal , 2011, J. Symb. Comput..

[17]  Bernd Sturmfels,et al.  A Note on Polynomial Reduction , 1993, J. Symb. Comput..

[18]  Lorenzo Robbiano,et al.  ON SuperG-BASES* , 1990 .

[19]  Margherita Roggero,et al.  Computing Quot schemes via marked bases over quasi-stable modules , 2015, Journal of Algebra.

[20]  Lifting monomial ideals , 1999, math/9907045.

[21]  Cristina Bertone,et al.  Quasi-stable ideals and Borel-fixed ideals with a given Hilbert polynomial , 2014, Applicable Algebra in Engineering, Communication and Computing.

[22]  A. Grothendieck,et al.  Éléments de géométrie algébrique , 1960 .

[23]  Joe Harris,et al.  The Geometry Of Schemes , 1992 .

[24]  O. A. Laudal A generalized trisecant lemma , 1978 .

[25]  J. Jantzen Representations of algebraic groups , 1987 .

[26]  D. Mumford The red book of varieties and schemes , 1988 .

[27]  Rosario Strano,et al.  A characterization of complete intersection curves in , 1988 .

[28]  Teo Mora,et al.  Buchberger-Weispfenning theory for effective associative rings , 2016, J. Symb. Comput..

[29]  S. Donkin REPRESENTATIONS OF ALGEBRAIC GROUPS (SECOND EDITION) (Mathematical Surveys and Monographs 107) By J ENS C ARSTEN J ANTZEN : 576 pp., US$99.00, ISBN 0-8218-3527-0 (American Mathematical Society, 2003) , 2005 .

[30]  Margherita Roggero,et al.  Term-ordering free involutive bases , 2013, J. Symb. Comput..

[31]  Dave Bayer,et al.  Grobner bases and extension of scalars , 1992 .

[32]  Francesca Cioffi,et al.  A DIVISION ALGORITHM IN AN AFFINE FRAMEWORK FOR FLAT FAMILIES COVERING HILBERT SCHEMES , 2012 .

[33]  Jan O. Kleppe The Hilbert-Flag scheme, its properties and its connection with the Hilbert scheme. applications to curves in 3-space , 1971 .

[34]  D. Buchsbaum,et al.  On a problem in linear algebra , 1973 .

[35]  Nitin Nitsure Construction of Hilbert and Quot Schemes , 2005 .

[36]  H. Michael Möller,et al.  On the Construction of Gröbner Bases Using Syzygies , 1988, J. Symb. Comput..

[37]  M. Roitman On the lifting problem for homogeneous ideals in polynomial rings , 1988 .