Counting generalized Reed-Solomon codes
暂无分享,去创建一个
Peter Beelen | Tom Høholdt | David G. Glynn | Krishna V. Kaipa | D. Glynn | Peter Beelen | T. Høholdt | K. Kaipa
[1] Robert Rolland. The number of MDS [7, 3] codes on finite fields of characteristic 2 , 2005, Applicable Algebra in Engineering, Communication and Computing.
[2] Joe W. Harris,et al. Algebraic Geometry: A First Course , 1995 .
[3] Aart Blokhuis,et al. Finite Geometries , 2018, Des. Codes Cryptogr..
[4] Richard C. Singleton,et al. Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.
[5] David G. Glynn. An Invariant for Hypersurfaces in Prime Characteristic , 2012, SIAM J. Discret. Math..
[6] J. Hirschfeld. Finite projective spaces of three dimensions , 1986 .
[7] Beniamino Segre,et al. Lectures on modern geometry , 1962 .
[8] David G. Glynn. Rings of geometries I , 1987, J. Comb. Theory, Ser. A.
[9] Krishna V. Kaipa,et al. An Asymptotic Formula in \(q\) for the Number of \([n, k]~q\) -Ary MDS Codes , 2013, IEEE Trans. Inf. Theory.
[10] J. Thas,et al. General Galois geometries , 1992 .
[11] Wei-Liang Chow,et al. On the Geometry of Algebraic Homogeneous Spaces , 1949 .
[12] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[13] F. Torres,et al. Algebraic Curves over Finite Fields , 1991 .
[14] Arne Dür,et al. The automorphism groups of Reed-Solomon codes , 1987, J. Comb. Theory A.
[15] David G. Glynn,et al. A condition for arcs and MDS codes , 2011, Des. Codes Cryptogr..
[16] J. Hirschfeld. Projective Geometries Over Finite Fields , 1980 .
[17] Simeon Ball,et al. On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Designs, Codes and Cryptography.
[18] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[19] Jan De Beule,et al. On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Des. Codes Cryptogr..
[20] Alexei N. Skorobogatov,et al. Formula for the number of [9, 3] MDS codes , 1995, IEEE Trans. Inf. Theory.
[21] David G. Glynn. The non-classical 10-arc of PG(4, 9) , 1986, Discret. Math..
[22] G. Lachaud,et al. Hyperplane Sections of Grassmannians and the Number of MDS Linear Codes , 2001 .