Constructing fully symmetric cubature formulae for the sphere
暂无分享,去创建一个
Yuan Xu | Sangwoo Heo | Yuan Xu | Sangwoo Heo
[1] V. Lebedev,et al. A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .
[2] Jan Szynal,et al. An upper bound for the Laguerre polynomials , 1998 .
[3] Louis E. Rosier. A Note on Presburger Arithmetic with Array Segments, Permutation and Equality , 1986, Inf. Process. Lett..
[4] J. I. Maeztu,et al. Consistent structures of invariant quadrature rules for the n -simplex , 1995 .
[5] R. Cools,et al. Monomial cubature rules since “Stroud”: a compilation , 1993 .
[6] Patrick Keast,et al. Fully Symmetric Integration Formulas for the Surface of the Sere in S Dimensions , 1983 .
[7] V. I. Lebedev,et al. Spherical quadrature formulas exact to orders 25–29 , 1977 .
[8] V. I. Lebedev,et al. Quadratures on a sphere , 1976 .
[9] P. Keast. Moderate-degree tetrahedral quadrature formulas , 1986 .
[10] A. D. McLaren,et al. Optimal numerical integration on a sphere , 1963 .
[11] Constructing cubature formulae for spheres and balls , 1999 .
[12] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[13] Yuan Xu,et al. Orthogonal polynomials and cubature formulae on spheres and on simplices , 1998 .
[14] Yuan Xu,et al. ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS , 1998 .
[15] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[16] Morris Weisfeld,et al. Orthogonal polynomials in several variables , 1959, Numerische Mathematik.
[17] H. Engels,et al. Numerical Quadrature and Cubature , 1980 .
[18] Patrick Keast. Cubature formulas for the surface of the sphere , 1987 .
[19] Ronald Cools,et al. A survey of numerical cubature over triangles , 1993 .
[20] James N. Lyness,et al. Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .
[21] P. Bazant,et al. Efficient Numerical Integration on the Surface of a Sphere , 1986 .