Interface procedures for finite difference approximations of the advection-diffusion equation

We investigate several existing interface procedures for finite difference methods applied to advection-diffusion problems. The accuracy, stiffness and reflecting properties of various interface procedures are investigated. The analysis and numerical experiments show that there are only minor differences between various methods once a proper parameter choice has been made.

[1]  M. Djordjevic,et al.  Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[2]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[3]  Thomas Rylander,et al.  Stable FEM-FDTD hybrid method for Maxwell's equations , 2000 .

[4]  X. Ferrieres,et al.  Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem , 2004, IEEE Transactions on Electromagnetic Compatibility.

[5]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[6]  Heat transfer in multi-block grid during solidification: Performance of Finite Differences and Finite Volume methods , 2008 .

[7]  Jan Nordström,et al.  A stable and conservative method for locally adapting the design order of finite difference schemes , 2011, J. Comput. Phys..

[8]  Bertil Gustafsson,et al.  The convergence rate for difference approximations to general mixed initial boundary value problems , 1981 .

[9]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[10]  Jan Nordström,et al.  A stable and high-order accurate conjugate heat transfer problem , 2010, J. Comput. Phys..

[11]  Fredrik Edelvik,et al.  Explicit Hybrid Time Domain Solver for the Maxwell Equations in 3D , 2000, J. Sci. Comput..

[12]  Jan Nordström,et al.  A Stable and Efficient Hybrid Method for Aeroacoustic Sound Generation and Propagation , 2005 .

[13]  Jan Nordström,et al.  Finite volume methods, unstructured meshes and strict stability for hyperbolic problems , 2003 .

[14]  S. Balachandar,et al.  A massively parallel multi-block hybrid compact-WENO scheme for compressible flows , 2009, J. Comput. Phys..

[15]  Pierre Sagaut,et al.  A dynamic p-adaptive Discontinuous Galerkin method for viscous flow with shocks , 2005 .

[16]  I. Lindblad,et al.  The engineering of multiblock/multigrid software for Navier-Stokes flows on structured meshes , 1993 .

[17]  Magnus Svärd,et al.  High-order accurate computations for unsteady aerodynamics , 2007 .

[18]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[19]  Bo Strand,et al.  Numerical studies of hyperbolic IBVP with high-order finite difference operators satisfying a summation by parts rule , 1998 .

[20]  R. Mittra,et al.  A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems , 2004, IEEE Transactions on Antennas and Propagation.

[21]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[22]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[23]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[24]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[25]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[26]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[27]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[28]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[29]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[30]  Jing Gong,et al.  A stable hybrid method for hyperbolic problems , 2006, J. Comput. Phys..

[31]  Jan Nordström,et al.  Fluid structure interaction problems : the necessity of a well posed, stable and accurate formulation , 2010 .

[32]  Fredrik Edelvik,et al.  A comparison of time‐domain hybrid solvers for complex scattering problems , 2002 .

[33]  Jan Nordström,et al.  High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates , 2001 .

[34]  Jan Nordström,et al.  High Order Finite Difference Approximations of Electromagnetic Wave Propagation Close to Material Discontinuities , 2003, J. Sci. Comput..

[35]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[36]  Masoud Darbandi,et al.  Multiblock hybrid grid finite volume method to solve flow in irregular geometries , 2006 .

[37]  Magnus Svärd,et al.  Steady-State Computations Using Summation-by-Parts Operators , 2005, J. Sci. Comput..

[38]  Anastasios S. Lyrintzis,et al.  High-Order Compact Schemes with Filters on Multi-block Domains , 2004, J. Sci. Comput..

[39]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[40]  Jan Nordström,et al.  Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators , 2010, J. Sci. Comput..

[41]  Chi-Wang Shu,et al.  Different Formulations Of The Discontinuous Galerkin Method For The Viscous Terms , 2000 .

[42]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[43]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[44]  Oscar Reula,et al.  Multi-block simulations in general relativity: high-order discretizations, numerical stability and applications , 2005, Classical and Quantum Gravity.

[45]  Jan Nordstroom,et al.  The influence of open boundary conditions on the convergence to steady state for the Navier-Stokes equations , 1989 .

[46]  Mark H. Carpenter,et al.  Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods , 2009, SIAM J. Sci. Comput..

[47]  Jing Gong,et al.  A stable and efficient hybrid scheme for viscous problems in complex geometries , 2007, J. Comput. Phys..