A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation

Abstract This work extends the previous two-dimensional compact scheme for the Cahn–Hilliard equation (Lee et al., 2014) to three-dimensional space. The proposed scheme, derived by combining a compact formula and a linearly stabilized splitting scheme, has second-order accuracy in time and fourth-order accuracy in space. The discrete system is conservative and practically stable. We also implement the compact scheme in a three-dimensional adaptive mesh refinement framework. The resulting system of discrete equations is solved by using a multigrid. We demonstrate the performance of our proposed algorithm by several numerical experiments.

[1]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[2]  Yibao Li,et al.  An unconditionally stable numerical method for bimodal image segmentation , 2012, Appl. Math. Comput..

[3]  Junseok Kim,et al.  A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system , 2008 .

[4]  Jaemin Shin,et al.  Computer Vision and Image Understanding Three-dimensional Volume Reconstruction from Slice Data Using Phase-field Models , 2022 .

[5]  Xuan Zhao,et al.  A three level linearized compact difference scheme for the Cahn-Hilliard equation , 2011, Science China Mathematics.

[6]  José Francisco Rodrigues,et al.  Mathematical Models for Phase Change Problems , 1989 .

[7]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[8]  Qiang Du,et al.  Motion of Interfaces Governed by the Cahn-Hilliard Equation with Highly Disparate Diffusion Mobility , 2012, SIAM J. Appl. Math..

[9]  Jaemin Shin,et al.  A conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains , 2013, Comput. Math. Appl..

[10]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[11]  J. W. Stephenson Single cell discretizations of order two and four for biharmonic problems , 1984 .

[12]  Ping Lin,et al.  Continuous finite element schemes for a phase field model in two-layer fluid Bénard-Marangoni convection computations , 2014, Comput. Phys. Commun..

[13]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[14]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[15]  Yibao Li,et al.  Multiphase image segmentation using a phase-field model , 2011, Comput. Math. Appl..

[16]  Z. F. Tian,et al.  High-order compact exponential finite difference methods for convection-diffusion type problems , 2007, J. Comput. Phys..

[17]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[18]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[19]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[20]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[21]  Xiaoming Wang,et al.  A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation , 2014, J. Comput. Phys..

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Huailing Song Energy stable and large time-stepping methods for the Cahn–Hilliard equation , 2015, Int. J. Comput. Math..

[24]  Yinnian He,et al.  A Family of Fourth-Order and Sixth-Order Compact Difference Schemes for the Three-Dimensional Poisson Equation , 2012, Journal of Scientific Computing.

[25]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[26]  Graham F. Carey,et al.  A high-order compact formulation for the 3D Poisson equation , 1996 .

[27]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[28]  Pedro Tarazona,et al.  Dynamic density functional theory of fluids , 1999 .

[29]  Semyon Tsynkov,et al.  Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number , 2013, J. Comput. Phys..

[30]  Jun Zhang Multigrid Method and Fourth-Order Compact Scheme for 2D Poisson Equation with Unequal Mesh-Size Discretization , 2002 .

[31]  Jaemin Shin,et al.  A fourth-order spatial accurate and practically stable compact scheme for the Cahn-Hilliard equation , 2014 .

[32]  Tao Tang,et al.  A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows , 2001, J. Sci. Comput..

[33]  A. Archer,et al.  Dynamical density functional theory and its application to spinodal decomposition. , 2004, The Journal of chemical physics.

[34]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[35]  A. Pillai Fourth‐order exponential finite difference methods for boundary value problems of convective diffusion type , 2001 .

[36]  Andrew G. Glen,et al.  APPL , 2001 .

[37]  Junseok Kim,et al.  A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint , 2010, Comput. Phys. Commun..

[38]  Godehard Sutmann,et al.  High-order compact solvers for the three-dimensional Poisson equation , 2006 .

[39]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[40]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[41]  Bernhard Preim,et al.  Reconstruction of Blood Vessels from Neck CT Datasets using Stable 3D Mass-Spring Models , 2008, VCBM.

[42]  Yibao Li,et al.  Phase-field simulations of crystal growth with adaptive mesh refinement , 2012 .

[43]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[44]  Jacek Klinowski,et al.  Nodal surface approximations to the P,G,D and I-WP triply periodic minimal surfaces , 2001 .

[45]  Irfan Altas,et al.  Multigrid Solution of Automatically Generated High-Order Discretizations for the Biharmonic Equation , 1998, SIAM J. Sci. Comput..

[46]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[47]  Yibao Li,et al.  Adaptive mesh refinement for simulation of thin film flows , 2014 .

[48]  K. Painter,et al.  A continuum approach to modelling cell-cell adhesion. , 2006, Journal of theoretical biology.

[49]  B. M. Fulk MATH , 1992 .

[50]  Phillip Colella,et al.  Adaptive mesh refinement for multiscale nonequilibrium physics , 2005, Computing in Science & Engineering.

[51]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[52]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[53]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..