Continuous-Time Input Pipeline ADCs

Two continuous-time input pipeline ADC architectures are introduced. The continuous-time input approach overcomes many of the challenges associated with a pure switched-capacitor architecture. The resistive input load of the two new architectures provides a benign interface to external drive circuitry. The switched-capacitor sampling function is moved to the second stage input which greatly eases the sampling distortion requirements and obviates the need for an explicit front-end sample-and-hold function. The second ADC presented additionally provides inherent anti-alias filtering, allowing the possibility of eliminating costly anti-alias filters. This second architecture also eases the jitter requirements of the ADC clock when compared to switched capacitor pipeline ADCs. Measured results obtained from two proof of concept test chips fabricated in a 0.18 μm CMOS process validate the effectiveness of the proposed techniques.

[1]  Stephen H. Lewis,et al.  Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications , 1992 .

[2]  Dong-Young Chang Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[3]  A. Baschirotto,et al.  A 200-Ms/s 10-mW switched-capacitor filter in 0.5-/spl mu/m CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[4]  Turker Kuyel,et al.  Optimal analog trim techniques for improving the linearity of pipeline ADCs , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[5]  Paul R. Gray,et al.  A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 /spl mu/m CMOS , 1996 .

[6]  Andrea Baschirotto,et al.  A 150 Msample/s 20 mW BiCMOS switched-capacitor biquad using precise gain op amps , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[7]  A. Karanicolas,et al.  A 15-b 1-Msample/s digitally self-calibrated pipeline ADC , 1993 .

[8]  Pavan Kumar Hanumolu,et al.  A continuous-time input pipeline ADC , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[9]  Wenhua Yang,et al.  A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input , 2001, IEEE J. Solid State Circuits.

[10]  I. Mehr,et al.  A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC , 1999, IEEE Journal of Solid-State Circuits.

[11]  Hussein Baher,et al.  Analog and Digital Signal Processing , 1990 .

[12]  Saska Lindfors,et al.  A 1.2V 240MHz CMOS Continuous-Time Low-Pass Filter for a UWB Radio Receiver , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[13]  A.M.A. Ali,et al.  A 100-dB SFDR 80-MSPS 14-Bit 0.35-$ muhbox m$BiCMOS Pipeline ADC , 2006, IEEE Journal of Solid-State Circuits.

[14]  I. Mehr,et al.  A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC , 2000 .

[15]  Y. Akazawa,et al.  Jitter analysis of high-speed sampling systems , 1990 .

[16]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[17]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.