Conceptualizing the built environment as a social–ecological system

Formulating a unified theory of the built environment may require that the built environment be understood as a complex social–ecological system, where multiple-related metabolisms interact at different scales. From this broad systems perspective, the dividing line between what is considered as nature and what is considered as built environment becomes a cultural attribute that changes with the historical context. Over the past four centuries, notions of environmental accounting and material metabolism have expanded from year-to-year economic and biological exchanges to energy, material, financial, and information flows extended through time and space. At present, the necessary extension of system limits in time and space is best achieved by combining a number of methods, including flow-based models and resource-conservation-based models, and top-down and bottom-up modelling approaches. Artefacts, flows, and actors can be linked over time by means of a common framework for describing the built environment, and by life cycle-oriented product modelling techniques. Despite such advances, existing theory seems incapable of fully integrating spatial and physical relationships, and is especially challenged when dealing with concepts of time. Ecological models provide a useful basis for new timing tools that integrate different time scales, past and future, and that allow for an assessment of adaptive capacity and other aspects of system resiliency. These models can be used to understand better the impact of different managerial and social policies at both the macro- and the micro-level. The management of the long-term evolution of this social–ecological system can only be assured through appropriating ecological concepts of time, and by integrating the history of nature with the history of human culture. Formuler une théorie unifiée du milieu bâti peut nécessiter que ce milieu soit compris comme un système socio-écologique complexe où des métabolismes multiples interagissent à différentes échelles. À partir de cette vaste perspective de systèmes, la ligne de partage entre ce qui est considéré comme la nature et ce qui est considéré comme le milieu bâti devient un attribut culturel qui change avec le contexte historique. Au cours des quatre derniers siècles, les notions d'écocomptabilité et de métabolisme matériel se sont élargies et sont passées d'échanges économiques et biologiques d'une année à l'autre à des flux d'énergie, de matériels, de finances et d'information s'étendant dans le temps et l'espace. Aujourd'hui, l'extension nécessaire des limites du système dans le temps et dans l'espace est réalisable en combinant un certain nombre de méthodes, y compris des modèles basés sur le flux et des modèles basés sur la conservation des ressources et des approches de modélisation descendantes et ascendantes. Artefacts, flux et acteurs peuvent être reliés dans le temps au moyen d'un cadre commun pour décrire le milieu bâti et les techniques de modélisation de produits orientées sur le cycle de vie. En dépit de tels progrès, la théorie actuelle semble incapable d'intégrer totalement les relations spatiales et physiques et est particulièrement en danger lorsqu'il s'agit de traiter de concepts de temps. Des modèles écologiques fournissent une base utile pour de nouveaux outils de synchronisation qui intègrent différentes échelles de temps, passées et futures, ce qui permet une évaluation de la capacité d'adaptation et d'autres aspects de la résilience du système. Ces modèles peuvent être utilisés pour mieux comprendre l'impact des différentes politiques de gestion et politiques sociales aux niveaux macro et micro économiques. La gestion de l'évolution dans le long terme de ce système socio-écologique ne peut être assurée que par l'appropriation de concepts écologiques de temps et par l'intégration de l'histoire de la nature dans celle de la culture humaine. milieu bâti, cadres conceptuels, ecosphère, ecosystème, métabolisme, durabilité, perspectives temporelles, elaboration de théorie, temps, systèmes urbains

[1]  Scott Elliott,et al.  ENERGY AND MATERIAL FLOW THROUGH THE URBAN ECOSYSTEM , 2000 .

[2]  Tom J. Bartuska,et al.  The Built Environment: A Collaborative Inquiry Into Design and Planning , 2007 .

[3]  Katherine McCoy,et al.  Information and Persuasion: Rivals or Partners? , 2000, Design Issues.

[4]  A. Wolman THE METABOLISM OF CITIES. , 1965, Scientific American.

[5]  J. Barrett,et al.  A material flow analysis and Ecological Footprint of York , 2002 .

[6]  Thomas Lützkendorf,et al.  Integrated life-cycle analysis , 2002 .

[7]  B. C. Patten,et al.  Complementarity of ecological goal functions. , 2001, Journal of theoretical biology.

[8]  Neil Korostoff,et al.  ECOLOGICAL DESIGN AND PLANNING , 1998, Landscape Journal.

[9]  William E. Rees,et al.  Globalization and Sustainability: Conflict or Convergence? , 2002 .

[10]  Ian I. Mitroff,et al.  The Challenge of the 21st Century: Managing Technology and Ourselves in a Shrinking World , 1994 .

[11]  Farhana Azim Design in Nature , 2014 .

[12]  Simon A. Levin,et al.  Fragile Dominion: Complexity and the Commons , 1999 .

[13]  B. Warf Splintering Urbanism: Networked Infrastructures, Technological Mobilities, and the Urban Condition , 2003 .

[14]  S. James,et al.  The Natural Step for Communities: How Cities and Towns can Change to Sustainable Practices , 2004 .

[15]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[16]  Robin Spence,et al.  Risk and regulation: can improved government action reduce the impacts of natural disasters? , 2004 .

[17]  Christian Kirchsteiger,et al.  A generic standard for the risk assessment process: discussion on a proposal made by the program committee of the ER-JRC workshop on 'Promotion of Technical Harmonization of Risk-Based Decision Making' , 2002 .

[18]  W. Steffen,et al.  Sustainability or Collapse? An Integrated History and Future of People on Earth , 2006 .

[19]  Patrick Geddes An Analysis of the Principles of Economics. , 1884 .

[20]  John Holmberg,et al.  Backcasting — a framework for strategic planning , 2000 .

[21]  N. Kohler,et al.  The building stock as a research object , 2002 .

[22]  W. Heijman Steady-State Economics , 1998 .

[23]  Robert Rosen,et al.  Essays on Life Itself , 1999 .

[24]  B. Wisner,et al.  At Risk: Natural Hazards, People's Vulnerability and Disasters , 1996 .

[25]  P. Hall,et al.  Urban Future 21: A Global Agenda for Twenty-First Century Cities , 2000 .

[26]  Rolf Peter Sieferle Rückblick auf die Natur. Eine Geschichte des Menschen und seiner Umwelt , 1997 .

[27]  D. Bromley,et al.  Environment and Economy: Property Rights and Public Policy , 1991 .

[28]  Kenneth Hewitt,et al.  Regions of Risk: A Geographical Introduction to Disasters , 1997 .

[29]  Gene Bazan Our Ecological Footprint: Reducing Human Impact on the Earth , 1997 .

[30]  E. Odum,et al.  Ecology and Our Endangered Life-Support Systems , 1989 .

[31]  D. Mileti Disasters by Design: A Reassessment of Natural Hazards in the United States , 1999 .

[32]  S. Low,et al.  The Built Environment and Spatial Form , 1990 .

[33]  B. Turner Organization for Economic Co-Operation and Development (OECD) , 2001 .

[34]  Amos Rapoport,et al.  The Mutual Interaction of People and Their Built Environment. , 1976 .

[35]  E. Howard Garden Cities Of To-Morrow , 1903 .

[36]  Robert Lawless,et al.  Book Review: Jared Diamond. Collapse: How Societies Choose to Fail or Succeed. New York, NY: Viking Penguin, 2005. , 2009 .

[37]  L. Lovins,et al.  Brittle Power: Energy Strategy for National Security , 1982 .

[38]  Rodney R. White Managing and interpreting uncertainty for climate change risk , 2004 .

[39]  K. C. Parsons,et al.  From Garden City to Green City. The Legacy of Ebenezer Howard , 2002 .

[40]  Jusuck Koh,et al.  Ecological Reasoning and Architectural Imagination , 2004 .

[41]  P. Brunner,et al.  Metabolism of the Anthroposphere , 1991 .

[42]  Robin Spence,et al.  Editorial: Managing the risks from natural hazards , 2004 .

[43]  David Pearce,et al.  Is the construction sector sustainable?: definitions and reflections , 2006 .

[44]  Peter Baccini,et al.  Netzstadt: Designing the Urban , 2003 .

[45]  C M Kozma,et al.  Managing risks. , 1997, Managed care interface.

[46]  A. Elena Charola,et al.  Rational Decision-Making in the Preservation of Cultural Property , 2002 .

[47]  Brian J. L. Berry The challenge of the 21st century: Managing technology and ourselves in a shrinking world: Harold A. Linstone with Ian I. Mitroff, State University of New York Press, Albany, NY, 1994. 428 pp, hardcover, 54.50; paperback, $19.95 , 1995 .

[48]  C. S. Holling Understanding the Complexity of Economic, Ecological, and Social Systems , 2001, Ecosystems.

[49]  G. J. Whitrow,et al.  The Natural Philosophy of Time , 1963 .

[50]  Dennis Polhill,et al.  Life Cycle Analysis , 1985 .

[51]  F. Dyson Time without end: Physics and biology in an open universe , 1979 .

[52]  Uta Hassler,et al.  Stoffströme und Kosten in den Bereichen Bauen und Wohnen , 1999 .

[53]  D. Ball Regions of Risk: a Geographical Introduction to Disasters , 1998 .

[54]  D. Finegold Book and Resource Reviews , 2005 .

[55]  J. Diamond Collapse: How Societies Choose to Fail or Succeed , 2005 .

[56]  John Cairns,et al.  World peace and global sustainability , 2000 .

[57]  R. Lempert,et al.  Shaping the Next One Hundred Years: New Methods for Quantitative Long-Term Policy Analysis , 2003 .

[58]  Dava Sobel,et al.  Virtual life , 2005, Nature.

[59]  R. Harris Building! , 1930, London’s Global Office Economy.

[60]  Charles L. Redman,et al.  Human Impact on Ancient Environments , 1999 .

[61]  Brian Walker,et al.  A handful of heuristics and some propositions for understanding resilience in social-ecological systems , 2006 .

[62]  S. Brand The Clock Of The Long Now: Time And Responsibility , 1999 .

[63]  G. Atkinson Sustainability, the capital approach and the built environment , 2008 .

[64]  Helga Weisz,et al.  SOCIETY AS HYBRID BETWEEN MATERIAL AND SYMBOLIC REALMS : TOWARD A THEORETICAL FRAMEWORK OF SOCIETY-NATURE INTERACTION , 2006 .

[65]  Salih Özbaran,et al.  The Mediterranean and The Mediterranean World in the Age of Philip II , 2012 .

[66]  Wei Yang,et al.  Long-term management of building stocks , 2007 .

[67]  G. Daily World without end: economics, environment and sustainable development: by David W. Pearce and Jeremy J. Warford Oxford University Press, 1993. £39.95 hbk (xi + 440 pages) ISBN 0 19 520881 1 , 1994 .

[68]  J Larkin,et al.  Long-term management. , 1993, The Practitioner.

[69]  T Appenzeller,et al.  Environment and the economy. , 1993, Science.

[70]  G. Schiller Urban infrastructure: challenges for resource efficiency in the building stock , 2007 .

[71]  Anne LaBastille,et al.  Ecology and Our Endangered Life-Support Systems. By Eugene P.Odum. (Sunderland, Mass.: Sinauer Associates, Inc.) x + 283 pp. Endnotes, illustrations, index. Paper, $14.95 , 1991 .

[72]  Niklaus Kohler Sustainability of New Work Practises and Building Concepts , 1998, CoBuild.

[73]  F. Braudel The Mediterranean and the Mediterranean World in the Age of Philip II , 1974 .

[74]  Charles M. Eastman,et al.  Building Product Models: Computer Environments, Supporting Design and Construction , 1999 .

[75]  Rodney Turner Sustainability auditing and assessment challenges , 2006 .

[76]  David Henderson Haney Leberecht Migge (1881--1935) and the modern garden in Germany , 2005 .