Hardy type derivations on generalised series fields

Abstract We consider the valued field K : = R ( ( Γ ) ) of generalised series (with real coefficients and monomials in a totally ordered multiplicative group Γ). We investigate how to endow K with a series derivation, that is a derivation that satisfies some natural properties such as commuting with infinite sums (strong linearity) and (an infinite version of) Leibniz rule. We characterise when such a derivation is of Hardy type, that is, when it behaves like differentiation of germs of real valued functions in a Hardy field. We provide a necessary and sufficient condition for a series derivation of Hardy type to be surjective.

[1]  August Pfizmaier,et al.  Sitzungsberichte der kaiserlichen Akademie der Wissenschaften , 1875 .

[2]  Countably Complementable,et al.  LINEAR ORDERINGS , 2006 .

[3]  L. Dries,et al.  Liouville closed H-fields , 2005 .

[4]  Maxwell Rosenlicht On the Value Group of a Differential Valuation II , 1979 .

[5]  M. Potter Orders of infinity , 2004 .

[6]  Angus Macintyre,et al.  Logarithmic‐Exponential Power Series , 1997 .

[7]  Irving Kaplansky,et al.  Maximal fields with valuations, II , 1942 .

[8]  A. Wilkie Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .

[9]  M. Rosenlicht,et al.  The rank of a Hardy field , 1983 .

[10]  Mickael Matusinski Differential Puiseux theorem in generalized series fields of finite rank , 2009, 0902.1758.

[11]  J. Conway On Numbers and Games , 1976 .

[12]  F. Kuhlmann Maps on Ultrametric Spaces, Hensel's Lemma, and Differential Equations Over Valued Fields , 2010, 1003.5677.

[13]  Michael Ch. Schmeling,et al.  Corps de transseries , 2001 .

[14]  Joris van der Hoeven,et al.  Transseries and Real Differential Algebra , 2006 .

[15]  Salma Kuhlmann,et al.  Hardy type derivations on fields of exponential logarithmic series , 2010, 1010.0896.

[16]  G. Hardy Properties of Logarithmico‐Exponential Functions , 2022 .

[17]  B. H. Neumann,et al.  On ordered division rings , 1949 .

[18]  Kaiserl. Akademie der Wissenschaften in Wien.,et al.  Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. , 1912 .

[19]  H. Gonshor An Introduction to the Theory of Surreal Numbers , 1986 .

[20]  Angus Macintyre,et al.  Logarithmic-exponential series , 2001, Ann. Pure Appl. Log..

[21]  Nicolas Bourbaki,et al.  Eléments de Mathématique , 1964 .

[22]  L. Fuchs Partially Ordered Algebraic Systems , 2011 .

[23]  H. Hahn,et al.  Über die nichtarchimedischen Größensysteme , 1995 .

[24]  Salma Kuhlmann,et al.  Ordered exponential fields , 1999 .

[25]  Matthias Aschenbrenner,et al.  H-fields and their Liouville extensions , 2002 .

[26]  Lou van den Dries,et al.  Closed asymptotic couples , 2000 .