Review on the influence of elastic particle properties on DEM simulation results

Abstract The on-going need to improve design or scale-up of particulate solids processes, may it be handling, storage, transport or prediction of nature's phenomena, led to the use of the Discrete Element Method (DEM) which can help to develop a fundamental understanding of the particulates' behaviour. The interest is often focused on the particle trajectories, bulk structure, forces and velocities. Research and reviews were carried out on theoretical treatments and applications of DEM, DEM coupled with CFD or in comparison to continuum modelling. Whatever DEM code or contact model is chosen, an elasticity parameter such as the Young's modulus, the shear modulus or yet the loading/unloading stiffness is implemented. The elasticity parameter not only accounts for the deformation behaviour but also for the time step. Concerning the latter one the elasticity is often reduced to lower the running time of a simulation. Our review on the influence of these elasticity parameters on numerical results revealed that in pure numerical studies the elasticity is often reduced, neglecting any probable change of numerical response. However, we also found that awareness of the importance of the elasticity has increased lately. This study is part of the PARDEM research network: www.pardem.eu .

[1]  Brahmeshwar Mishra,et al.  On the determination of contact parameters for realistic DEM simulations of ball mills , 2001 .

[2]  H. Landry,et al.  Discrete element representation of manure products , 2006 .

[3]  Mojtaba Ghadiri,et al.  Computer simulation of the effect of contact stiffness and adhesion on the fluidization behaviour of powders , 2007 .

[4]  A. Kwade,et al.  Effect of the primary particle morphology on the micromechanical properties of nanostructured alumina agglomerates , 2012, Journal of Nanoparticle Research.

[5]  Hertz On the Contact of Elastic Solids , 1882 .

[6]  Jpk Seville,et al.  The influence of DEM simulation parameters on the particle behaviour in a V-mixer , 2002 .

[7]  Paul W. Cleary,et al.  DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge , 2002 .

[8]  D. Barton,et al.  Strength and signature of force networks in axially compacted sphere and non-sphere granular media: micromechanical investigations , 2005 .

[9]  Bruno C. Hancock,et al.  Process modeling in the pharmaceutical industry using the discrete element method. , 2009, Journal of pharmaceutical sciences.

[10]  John Bridgwater,et al.  Granular flow over a flat-bladed stirrer , 2001 .

[11]  S. Thakur,et al.  An experimental and numerical study of packing, compression, and caking behaviour of detergent powders , 2014 .

[12]  Aibing Yu,et al.  Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics , 1997 .

[13]  Lev Khazanovich,et al.  Mechanistic modelling of tests of unbound granular materials , 2014 .

[14]  Spahn,et al.  Model for collisions in granular gases. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  J. Bao,et al.  Numerical simulation of particle dynamics in different flow regimes in a rotating drum , 2007 .

[16]  Ng Niels Deen,et al.  Review of discrete particle modeling of fluidized beds , 2007 .

[17]  Otis R. Walton,et al.  Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres , 1993 .

[18]  Runyu Yang,et al.  Numerical modelling of the breakage of loose agglomerates of fine particles , 2009 .

[19]  A. Yu,et al.  Rolling friction in the dynamic simulation of sandpile formation , 1999 .

[20]  G. Lodewijks,et al.  DEM speedup: Stiffness effects on behavior of bulk material , 2014 .

[21]  Masayuki Horio,et al.  Numerical simulation of cohesive powder behavior in a fluidized bed , 1998 .

[22]  Stefan Heinrich,et al.  Breakage behaviour of agglomerates and crystals by static loading and impact , 2011 .

[23]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[24]  C. Kloss,et al.  Models, algorithms and validation for opensource DEM and CFD-DEM , 2012 .

[25]  Peter Eberhard,et al.  A discrete element model to describe failure of strong rock in uniaxial compression , 2011 .

[26]  A. Kwade,et al.  Measurement and simulation of micromechanical properties of nanostructured aggregates via nanoindentation and DEM-simulation , 2014 .

[27]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[28]  Herman Ramon,et al.  DEM simulations of the particle flow on a centrifugal fertilizer spreader , 2009 .

[29]  F. Maio,et al.  Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes , 2004 .

[30]  Shinichi Yuu,et al.  Three-dimensional numerical simulation of the motion of particles discharging from a rectangular hopper using distinct element method and comparison with experimental data (effects of time steps and material properties) , 1995 .

[31]  P. A. Langston,et al.  Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions , 1995 .

[32]  L. Huilin,et al.  Simulation of motion of particles in reciprocating grates using DEM , 2013 .

[33]  Stefan Luding,et al.  Micro¿macro transition for anisotropic, frictional granular packings , 2004 .

[34]  Magnus Evertsson,et al.  The contribution of DEM to the science of comminution , 2013 .

[35]  Matthew J. Metzger,et al.  Numerical investigation of the breakage of bonded agglomerates during impact , 2012 .

[36]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[37]  Daniel M. Hanes,et al.  Simulations and physical measurements of glass spheres flowing down a bumpy incline , 2000 .

[38]  Yutaka Tsuji,et al.  Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe , 1992 .

[39]  C. Thornton,et al.  A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres , 1998 .

[40]  A. Kwade,et al.  Segregation of particulate solids: Experiments and DEM simulations , 2014 .

[41]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[42]  David Parker,et al.  Axial mixing in a ploughshare mixer , 2007 .

[43]  Hideya Nakamura,et al.  Numerical modeling of particle fluidization behavior in a rotating fluidized bed , 2007 .

[44]  Ali Hassanpour,et al.  Influence of contact stiffnesses on the micromechanical characteristics of dense particulate systems subjected to shearing , 2006 .

[45]  Paul W. Cleary,et al.  Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment , 2000 .

[46]  J. Engel,et al.  Modellversuche und numerische Simulationen mit der Diskrete‐Elemente‐Methode zum räumlichen passiven Erddruck , 2007 .

[47]  R. L. Braun,et al.  Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks , 1986 .

[48]  S. Luding Cohesive, frictional powders: contact models for tension , 2008 .

[49]  Matthew R. Kuhn,et al.  A flexible boundary for three‐dimensional dem particle assemblies , 1995 .

[50]  Colin Thornton,et al.  Effects of Material Properties on Granular Flow in a Silo Using DEM Simulation , 2002 .

[51]  Catherine O'Sullivan,et al.  Application of Taguchi methods to DEM calibration of bonded agglomerates , 2011 .

[52]  M. Ghadiri,et al.  Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy , 2006 .

[53]  Colin Thornton,et al.  Discrete particle simulation of agglomerate impact coalescence , 1998 .

[54]  C. J. Coetzee,et al.  Discrete element parameter calibration and the modelling of dragline bucket filling , 2010 .

[55]  Runyu Yang,et al.  Discrete particle simulation of particulate systems: A review of major applications and findings , 2008 .

[56]  A. Rasmuson,et al.  Numerical modelling of breakage and adhesion of loose fine-particle agglomerates , 2014 .

[57]  Paul W. Cleary,et al.  DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills , 2000 .

[58]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[59]  M. Hounslow,et al.  Surface velocity measurement in a high shear mixer , 2006 .

[60]  D. J. Barnes,et al.  Computer simulated deformation of compact granular assemblies , 1986 .

[61]  Dietrich E. Wolf,et al.  Influence of particle elasticity in shear testers , 2006 .

[62]  P Zulli,et al.  Numerical investigation of the angle of repose of monosized spheres. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Jin Y. Ooi,et al.  Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model , 2014, Granular Matter.

[64]  A. Kwade,et al.  Measurement of the micromechanical properties of nanostructured aggregates via nanoindentation , 2012 .

[65]  K. Malone,et al.  Determination of contact parameters for discrete element method simulations of granular systems , 2008 .

[66]  C. J. Coetzee,et al.  Calibration of discrete element parameters and the modelling of silo discharge and bucket filling , 2009 .

[67]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .