Rhenium(I) phenanthrolines bearing electron withdrawing CF3 substituents: synthesis, characterization and biological evaluation

Rhenium(I) tricarbonyl complexes bearing a 2,4,7,9-tetraphenylphenanthroline ligand, where the 2,9-phenyl groups have either meta- or para-CF3 groups, have been screened against a selection of cell lines. The meta derivative shows anticancer activity against HeLa and A549 cell lines, whereas the para derivative causes proliferation of HL-60 cells, whilst showing toxicity towards A549 cells.

[1]  K. K. Lo,et al.  Emissive behavior, cytotoxic activity, cellular uptake, and PEGylation properties of new luminescent rhenium(I) polypyridine poly(ethylene glycol) complexes. , 2012, Inorganic chemistry.

[2]  K. K. Lo,et al.  Synthesis, Emission Characteristics, Cellular Studies, and Bioconjugation Properties of Luminescent Rhenium(I) Polypyridine Complexes with a Fluorous Pendant , 2012 .

[3]  K. K. Lo,et al.  Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. , 2012, Dalton transactions.

[4]  Flora L Thorp-Greenwood,et al.  Complexes in context: attempting to control the cellular uptake and localisation of rhenium fac-tricarbonyl polypyridyl complexes. , 2011, Dalton transactions.

[5]  Simon J. A. Pope,et al.  Towards near-IR emissive rhenium tricarbonyl complexes: Synthesis and characterisation of unusual 2,2'-biquinoline complexes , 2011 .

[6]  K. K. Lo,et al.  Luminescent rhenium(I) polypyridine fluorous complexes as novel trifunctional biological probes. , 2011, Inorganic chemistry.

[7]  K. Y. Zhang,et al.  Recent Exploitation of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Biomolecular and Cellular Probes , 2011 .

[8]  Kenneth Kam-Wing Lo,et al.  Luminescent rhenium(I) polypyridine complexes appended with an α-D-glucose moiety as novel biomolecular and cellular probes. , 2011, Chemistry.

[9]  N. Russo,et al.  Rhenium(IV) compounds inducing apoptosis in cancer cells. , 2011, Chemical communications.

[10]  I. Clark,et al.  Ultrafast excited-state dynamics of rhenium(I) photosensitizers [Re(Cl)(CO)3(N,N)] and [Re(imidazole)(CO)3(N,N)]+: diimine effects. , 2011, Inorganic chemistry.

[11]  P. Donnelly The role of coordination chemistry in the development of copper and rhenium radiopharmaceuticals. , 2011, Dalton transactions.

[12]  K. Y. Zhang,et al.  Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes , 2010 .

[13]  Nihal Deligonul,et al.  fac-Tricarbonyl Rhenium(I) Azadipyrromethene Complexes , 2009 .

[14]  Yong Wang,et al.  Syntheses, Structures, and Properties of Tricarbonyl (Chloro) Rhenium(I) Complexes with Redox-Active Tetrathiafulvalene−Pyrazole Ligands , 2009 .

[15]  M. Chergui,et al.  Femtosecond fluorescence and intersystem crossing in rhenium(I) carbonyl-bipyridine complexes. , 2008, Journal of the American Chemical Society.

[16]  K. K. Lo,et al.  Rhenium(I) polypyridine biotin isothiocyanate complexes as the first luminescent biotinylation reagents: synthesis, photophysical properties, biological labeling, cytotoxicity, and imaging studies. , 2008, Inorganic chemistry.

[17]  P. Matousek,et al.  Probing intraligand and charge transfer excited states of fac-[Re(R)(CO)_3(CO_2Et-dppz)]^+ (R = py, 4-Me_2N-py; CO_2Et-dppz = dipyrido[3,2a:2′,3′c]phenazine-11-carboxylic ethyl ester) using time-resolved infrared spectroscopy , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[18]  D. Lloyd,et al.  Rhenium fac tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications. , 2007, Chemical communications.

[19]  M. Edelman,et al.  Targeted radiopharmaceutical therapy for advanced lung cancer: Phase I trial of rhenium Re188 somatostatin analogue P2045 , 2007 .

[20]  Z. Hong,et al.  High performance yellow light-emitting organic electrophosphorescent devices based on Re(I) complex , 2007 .

[21]  Dik‐Lung Ma,et al.  DNA binding and cytotoxicity of ruthenium(II) and rhenium(I) complexes of 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine. , 2007, Inorganic chemistry.

[22]  E. Zangrando,et al.  fac-[Re(CO)3(dmso-O)3](CF3SO3): a new versatile and efficient Re(I) precursor for the preparation of mono and polynuclear compounds containing fac-[Re(CO)3]+ fragments. , 2006, Dalton transactions.

[23]  J. Zubieta,et al.  Developing the {M(CO)3}+ core for fluorescence applications: Rhenium tricarbonyl core complexes with benzimidazole, quinoline, and tryptophan derivatives. , 2006, Inorganic chemistry.

[24]  J. Brennan,et al.  Bridging the gap between in vitro and in vivo imaging: isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies. , 2004, Journal of the American Chemical Society.

[25]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[26]  Colin G. Coates,et al.  The photophysics of fac-[Re(CO)_3(dppz)(py)]^+ in CH_3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[27]  J. Vittal,et al.  Tricarbonylrhenium(I) complexes of phosphine-derivatized amines, amino acids and a model peptide: structures, solution behavior and cytotoxicity , 2002 .

[28]  A. Vlček The life and times of excited states of organometallic and coordination compounds , 2000 .

[29]  Roger Schibli,et al.  Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M=Re, Tc) directed towards radiopharmaceutical application , 1999 .

[30]  D. J. Stufkens,et al.  Ligand-dependent excited state behaviour of Re(I) and Ru(II) carbonyl–diimine complexes , 1998 .

[31]  J. Mayer,et al.  RHENIUM(V) OXO-ALKOXIDE COMPLEXES : SYNTHESES AND OXIDATION TO ALDEHYDES , 1995 .

[32]  L. Wallace,et al.  Temperature dependent emission properties of rhenium(I) tricarbonyl complexes containing alkyl- and aryl-substituted phenanthrolines as ligands , 1995 .

[33]  B. P. Sullivan,et al.  Synthetic control of excited states. Nonchromophoric ligand variations in polypyridyl complexes of osmium (II) , 1985 .

[34]  J. Sauvage,et al.  Direct synthesis of disubstituted aromatic polyimine chelates , 1983 .

[35]  M. Wrighton,et al.  Raman spectroscopy of electronic excited organometallic complexes: a comparison of the metal to 2,2'-bipyridine charge-transfer state of fac-(2,2'-bipyridine)tricarbonylhalorhenium and tris(2,2'-bipyridine)ruthenium(II) , 1983 .

[36]  B. P. Sullivan,et al.  Highly luminescent polypyridyl complexes of osmium(II) , 1980 .

[37]  M. Wrighton,et al.  Multiple emissions from rhenium(I) complexes: intraligand and charge-transfer emission from substituted metal carbonyl cations , 1979 .

[38]  M. Wrighton,et al.  The nature of the lowest excited state in fac-tricarbonylhalobis(4-phenylpyridine)rhenium(I) and fac-tricarbonylhalobis(4,4'-bipyridine)rhenium(I): emissive organometallic complexes in fluid solution , 1979 .

[39]  D. Morse,et al.  Simultaneous multiple emissions from fac-XRe(CO)3(3-benzoylpyridine)2:n-.pi.* intraligand and charge-transfer emission at low temperature , 1978 .

[40]  D. Morse,et al.  Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes , 1974 .

[41]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .