Type 2 diabetes as a protein misfolding disease.

[1]  M. Ingelsson,et al.  In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. , 2015, The American journal of pathology.

[2]  K. Tsai,et al.  IAPP driven metabolic reprogramming induces regression of p53 - deficient tumours in vivo , 2014, Nature.

[3]  J. Ehses,et al.  IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice , 2015, Diabetologia.

[4]  J. Jhamandas,et al.  Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer's disease. , 2014, Current Alzheimer research.

[5]  D. Scott,et al.  The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells , 2014, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  M. Komatsu,et al.  Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. , 2014, The Journal of clinical investigation.

[7]  C. Glabe,et al.  Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. , 2014, The Journal of clinical investigation.

[8]  David R. Liu,et al.  Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones , 2014, Nature.

[9]  J. Ehses,et al.  Resident Macrophages Mediate Islet Amyloid Polypeptide–Induced Islet IL-1β Production and β-Cell Dysfunction , 2014, Diabetes.

[10]  P. Butler,et al.  UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells , 2014, Autophagy.

[11]  Mineyuki Mizuguchi,et al.  Exogenous amyloidogenic proteins function as seeds in amyloid β-protein aggregation. , 2014, Biochimica et biophysica acta.

[12]  C. Hetz,et al.  Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases , 2014, Nature Reviews Neuroscience.

[13]  S. Kahn,et al.  Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future , 2014, The Lancet.

[14]  Hong Zhang,et al.  Common variants in PERK, JNK, BIP and XBP1 genes are associated with the risk of prediabetes or diabetes‐related phenotypes in a Chinese population , 2014, Chinese medical journal.

[15]  C. Soto,et al.  Role of Protein Misfolding and Proteostasis Deficiency in Protein Misfolding Diseases and Aging , 2013, International journal of cell biology.

[16]  D. Raleigh,et al.  Islet amyloid polypeptide toxicity and membrane interactions , 2013, Proceedings of the National Academy of Sciences.

[17]  A. Giese,et al.  Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. , 2013, Biochimica et biophysica acta.

[18]  C. DeCarli,et al.  Amylin deposition in the brain: A second amyloid in Alzheimer disease? , 2013, Annals of Neurology.

[19]  Mathias Jucker,et al.  Self-propagation of pathogenic protein aggregates in neurodegenerative diseases , 2013, Nature.

[20]  C. Soto,et al.  Cross-Seeding of Misfolded Proteins: Implications for Etiology and Pathogenesis of Protein Misfolding Diseases , 2013, PLoS pathogens.

[21]  C. Östenson,et al.  The Type 2 Diabetes–Associated Gene Ide Is Required for Insulin Secretion and Suppression of α-Synuclein Levels in β-Cells , 2013, Diabetes.

[22]  L. Punzi,et al.  Autophagy in human health and disease. , 2013, The New England journal of medicine.

[23]  Francis Eustache,et al.  Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease , 2013, NeuroImage: Clinical.

[24]  P. Butler,et al.  β-Cell Failure in Type 2 Diabetes: A Case of Asking Too Much of Too Few? , 2013, Diabetes.

[25]  M. Heneka,et al.  NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice , 2012, Nature.

[26]  Masaki Tanaka,et al.  p62/SQSTM1-Dependent Autophagy of Lewy Body-Like α-Synuclein Inclusions , 2012, PloS one.

[27]  N. Pattabiraman,et al.  An Intrinsically Disordered Region of the Acetyltransferase p300 with Similarity to Prion-Like Domains Plays a Role in Aggregation , 2012, PloS one.

[28]  L. Hersh,et al.  Degradation of islet amyloid polypeptide by neprilysin , 2012, Diabetologia.

[29]  S. Prusiner,et al.  A Unifying Role for Prions in Neurodegenerative Diseases , 2012, Science.

[30]  C. Soto Transmissible Proteins: Expanding the Prion Heresy , 2012, Cell.

[31]  David Eisenberg,et al.  Atomic View of a Toxic Amyloid Small Oligomer , 2012, Science.

[32]  C. Soto,et al.  Natural animal models of neurodegenerative protein misfolding diseases. , 2012, Current pharmaceutical design.

[33]  D. Bers,et al.  Hyperamylinemia Contributes to Cardiac Dysfunction in Obesity and Diabetes: A Study in Humans and Rats , 2012, Circulation Research.

[34]  J. Kong,et al.  Oxidative stress in neurodegenerative diseases , 2012, Neural regeneration research.

[35]  C. Soto,et al.  Microcin Amyloid Fibrils A Are Reservoir of Toxic Oligomeric Species , 2012, The Journal of Biological Chemistry.

[36]  N. Van Rooijen,et al.  IL-1 Blockade Attenuates Islet Amyloid Polypeptide-Induced Proinflammatory Cytokine Release and Pancreatic Islet Graft Dysfunction , 2011, The Journal of Immunology.

[37]  Claudio Soto,et al.  Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. , 2011, Seminars in cell & developmental biology.

[38]  Per Westermark,et al.  Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. , 2011, Physiological reviews.

[39]  S. Kahn,et al.  β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. , 2011, The American journal of pathology.

[40]  L. Glimcher,et al.  Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion , 2011, Proceedings of the National Academy of Sciences.

[41]  A. Alexandrescu,et al.  Mechanism of Amylin Fibrillization Enhancement by Heparin* , 2011, The Journal of Biological Chemistry.

[42]  S. Masters,et al.  Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. , 2011, Trends in molecular medicine.

[43]  J. Chan,et al.  Involvement of mitochondrial dysfunction in human islet amyloid polypeptide-induced apoptosis in INS-1E pancreatic beta cells: An effect attenuated by phycocyanin. , 2011, The international journal of biochemistry & cell biology.

[44]  P. Butler,et al.  Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic β-cells: protective role of p62-positive cytoplasmic inclusions , 2011, Cell Death and Differentiation.

[45]  S. Shoelson,et al.  Type 2 diabetes as an inflammatory disease , 2011, Nature Reviews Immunology.

[46]  N. Eberhardt,et al.  Autophagy protects against human islet amyloid polypeptide‐associated apoptosis , 2010, Journal of diabetes investigation.

[47]  K. Wada,et al.  Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions , 2011, Diabetologia.

[48]  R. Rizza,et al.  β-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide–Induced UCH-L1 Deficiency , 2010, Diabetes.

[49]  Christine E. Becker,et al.  Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes , 2010, Nature Immunology.

[50]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[51]  Hong Qing,et al.  Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes , 2010, Neurobiology of Aging.

[52]  F. Meissner,et al.  Mutant superoxide dismutase 1-induced IL-1β accelerates ALS pathogenesis , 2010, Proceedings of the National Academy of Sciences.

[53]  M. Donath,et al.  Role of IL-1β in type 2 diabetes , 2010, Current opinion in endocrinology, diabetes, and obesity.

[54]  D. Raleigh,et al.  Neprilysin Impedes Islet Amyloid Formation by Inhibition of Fibril Formation Rather Than Peptide Degradation* , 2010, The Journal of Biological Chemistry.

[55]  R. L. Hull,et al.  Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? , 2010, Diabetologia.

[56]  H. Reber,et al.  Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. , 2010, The American journal of pathology.

[57]  M. Hayden,et al.  Cholesterol in β-cell Dysfunction: The Emerging Connection Between HDL Cholesterol and Type 2 Diabetes , 2010, Current diabetes reports.

[58]  D. Berg,et al.  Neprilysin activity in cerebrospinal fluid is associated with dementia and amyloid-β42 levels in Lewy body disease. , 2010, Journal of Alzheimer's disease : JAD.

[59]  Karin Kraft,et al.  [Type-2 diabetes]. , 2010, MMW Fortschritte der Medizin.

[60]  P. Butler,et al.  Calcium-activated Calpain-2 Is a Mediator of Beta Cell Dysfunction and Apoptosis in Type 2 Diabetes* , 2009, The Journal of Biological Chemistry.

[61]  R. DeFronzo,et al.  Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons , 2009, Proceedings of the National Academy of Sciences.

[62]  J. Chan,et al.  Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. , 2009, The international journal of biochemistry & cell biology.

[63]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[64]  U. Boggi,et al.  Autophagy in human type 2 diabetes pancreatic beta cells , 2009, Diabetologia.

[65]  A. Ciechanover,et al.  Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. , 2009, Annual review of pharmacology and toxicology.

[66]  A. Halapas,et al.  The use of animal models in the study of diabetes mellitus. , 2009, In vivo.

[67]  C. Ling,et al.  Mitochondrial dysfunction in pancreatic β-cells in Type 2 Diabetes , 2008, Molecular and Cellular Endocrinology.

[68]  Kun Wook Chung,et al.  Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. , 2008, Cell metabolism.

[69]  K. Lim,et al.  Autophagy-mediated clearance of aggresomes is not a universal phenomenon. , 2008, Human molecular genetics.

[70]  Maarten F. M. Engel,et al.  Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane , 2008, Proceedings of the National Academy of Sciences.

[71]  Claudio Soto,et al.  Protein misfolding and neurodegeneration. , 2008, Archives of neurology.

[72]  R. Riek,et al.  Amyloid as a Depot for the Formulation of Long-Acting Drugs , 2008, PLoS biology.

[73]  P. Butler,et al.  Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. , 2008, Endocrine reviews.

[74]  Paul Maruff,et al.  β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease , 2007 .

[75]  U. Boggi,et al.  The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients , 2007, Diabetologia.

[76]  R. Rizza,et al.  High Expression Rates of Human Islet Amyloid Polypeptide Induce Endoplasmic Reticulum Stress–Mediated β-Cell Apoptosis, a Characteristic of Humans With Type 2 but Not Type 1 Diabetes , 2007, Diabetes.

[77]  C. Zeng,et al.  Amylin deposition in the kidney of patients with diabetic nephropathy. , 2007, Kidney international.

[78]  D. Selkoe,et al.  Aβ Oligomers – a decade of discovery , 2007, Journal of neurochemistry.

[79]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[80]  J. Collinge,et al.  Disease-associated prion protein oligomers inhibit the 26S proteasome. , 2007, Molecular cell.

[81]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[82]  S. Kahn,et al.  Identification of the Amyloid-Degrading Enzyme Neprilysin in Mouse Islets and Potential Role in Islet Amyloidogenesis , 2007, Diabetes.

[83]  Paul Maruff,et al.  Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. , 2007, Brain : a journal of neurology.

[84]  R. Nitsch,et al.  Neuronal neprilysin overexpression is associated with attenuation of Aβ-related spatial memory deficit , 2006, Neurobiology of Disease.

[85]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[86]  O. Vitolo,et al.  Ubiquitin Hydrolase Uch-L1 Rescues β-Amyloid-Induced Decreases in Synaptic Function and Contextual Memory , 2006, Cell.

[87]  D. Raleigh,et al.  Characterization of the heparin binding site in the N-terminus of human pro-islet amyloid polypeptide: implications for amyloid formation. , 2006, Biochemistry.

[88]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[89]  S. Bonner-Weir,et al.  Evidence for a Role of the Ubiquitin-Proteasome Pathway in Pancreatic Islets , 2006, Diabetes.

[90]  C. Glabe Common mechanisms of amyloid oligomer pathogenesis in degenerative disease , 2006, Neurobiology of Aging.

[91]  D. Baker,et al.  The 3D profile method for identifying fibril-forming segments of proteins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Claudio Soto,et al.  Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. , 2006, Trends in biochemical sciences.

[93]  D. Rubinsztein,et al.  Rapamycin alleviates toxicity of different aggregate-prone proteins. , 2006, Human molecular genetics.

[94]  P. Scheltens,et al.  Risk of dementia in diabetes mellitus: a systematic review , 2006, The Lancet Neurology.

[95]  W. Cefalu Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. , 2006, ILAR journal.

[96]  T. O’Brien,et al.  Feline models of type 2 diabetes mellitus. , 2006, ILAR journal.

[97]  P. Butler,et al.  Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. , 2006, ILAR journal.

[98]  Terje Johansen,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[99]  G. Cooper,et al.  Thiol reducing compounds prevent human amylin‐evoked cytotoxicity , 2005, The FEBS journal.

[100]  Hai Lin,et al.  Amyloid ion channels: a common structural link for protein-misfolding disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[101]  P. Westermark,et al.  Is aggregated IAPP a cause of beta-cell failure in transplanted human pancreatic islets? , 2005, Current diabetes reports.

[102]  G. Soukhatcheva,et al.  Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in {beta}-cells. , 2005, Endocrinology.

[103]  E. Wilander,et al.  The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus , 1978, Diabetologia.

[104]  C. Soto,et al.  Amyloid inhibitors and beta-sheet breakers. , 2005, Sub-cellular biochemistry.

[105]  Per Westermark,et al.  Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. , 2004, The Journal of clinical endocrinology and metabolism.

[106]  Allan I. Levey,et al.  Oxidative Modifications and Down-regulation of Ubiquitin Carboxyl-terminal Hydrolase L1 Associated with Idiopathic Parkinson's and Alzheimer's Diseases* , 2004, Journal of Biological Chemistry.

[107]  P. Højrup,et al.  Proteasomal Inhibition by α-Synuclein Filaments and Oligomers* , 2004, Journal of Biological Chemistry.

[108]  M. R. Nilsson,et al.  Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation. , 2004, The Biochemical journal.

[109]  Ronald C Petersen,et al.  Increased risk of type 2 diabetes in Alzheimer disease. , 2004, Diabetes.

[110]  B. Hansen,et al.  Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta-cell population , 1993, Diabetologia.

[111]  C. Howard Longitudinal studies on the development of diabetes in individual Macaca nigra , 1986, Diabetologia.

[112]  Xiaorong Zhu,et al.  Role of β-Cell Prohormone Convertase (PC)1/3 in Processing of Pro-Islet Amyloid Polypeptide , 2004 .

[113]  P. Højrup,et al.  Proteasomal inhibition by alpha-synuclein filaments and oligomers. , 2004, The Journal of biological chemistry.

[114]  Xiaorong Zhu,et al.  Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. , 2004, Diabetes.

[115]  D. Selkoe,et al.  Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death , 2003, Neuron.

[116]  P. Lansbury,et al.  Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. , 2003, Annual review of neuroscience.

[117]  T. Dawson,et al.  Molecular Pathways of Neurodegeneration in Parkinson's Disease , 2003, Science.

[118]  Aaron Ciechanover,et al.  The Ubiquitin Proteasome System in Neurodegenerative Diseases Sometimes the Chicken, Sometimes the Egg , 2003, Neuron.

[119]  M. Prentki,et al.  Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. , 2003, Endocrinology.

[120]  W. Duckworth,et al.  An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. , 2003, Diabetes.

[121]  A. Matouschek,et al.  Aggregated and Monomeric α-Synuclein Bind to the S6′ Proteasomal Protein and Inhibit Proteasomal Function* , 2003, The Journal of Biological Chemistry.

[122]  Joachim Spranger,et al.  Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. , 2003, Diabetes.

[123]  Robert A. Rizza,et al.  β-Cell Deficit and Increased β-Cell Apoptosis in Humans With Type 2 Diabetes , 2003, Diabetes.

[124]  Robert A Rizza,et al.  Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. , 2003, Diabetes.

[125]  Claudio Soto,et al.  Unfolding the role of protein misfolding in neurodegenerative diseases , 2003, Nature Reviews Neuroscience.

[126]  S. Lindquist,et al.  Conversion of PrP to a Self-Perpetuating PrPSc-like Conformation in the Cytosol , 2002, Science.

[127]  R. Robertson,et al.  Minireview: Secondary β-Cell Failure in Type 2 Diabetes-A Convergence of Glucotoxicity and Lipotoxicity. , 2002, Endocrinology.

[128]  R. Robertson,et al.  Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity. , 2002, Endocrinology.

[129]  S. Seino,et al.  S20G mutation of the amylin gene is associated with Type II diabetes in Japanese , 2001, Diabetologia.

[130]  J. Critchley,et al.  The islet amyloid polypeptide (amylin) gene S20G mutation in Chinese subjects: Evidence for associations with type 2 diabetes and cholesterol levels , 2001, Clinical endocrinology.

[131]  J. Finnerty,et al.  The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. , 2001, Diabetes.

[132]  T. Sanke,et al.  Enhanced in vitro production of amyloid-like fibrils from mutant (S20G) islet amyloid polypeptide , 2001, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[133]  M G McInnis,et al.  Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. , 2000, Science.

[134]  N. Eberhardt,et al.  S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wild-type amylin. , 2000, The American journal of pathology.

[135]  R. Kopito,et al.  Aggresomes, inclusion bodies and protein aggregation. , 2000, Trends in cell biology.

[136]  W. Duckworth,et al.  Degradation of Amylin by Insulin-degrading Enzyme* , 2000, The Journal of Biological Chemistry.

[137]  P. Stieg,et al.  Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. , 2000, Science.

[138]  P. May,et al.  Human Amylin Stimulates Inflammatory Cytokine Secretion from Human Glioma Cells , 2000, Neuroimmunomodulation.

[139]  S. L. Yates,et al.  Amyloid β and Amylin Fibrils Induce Increases in Proinflammatory Cytokine and Chemokine Production by THP‐1 Cells and Murine Microglia , 2000, Journal of neurochemistry.

[140]  B. Kagan,et al.  Amyloid peptide channels: Blockade by zinc and inhibition by Congo red (amyloid channel block) , 2000, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[141]  D. Harrison,et al.  The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. , 1999, Diabetes.

[142]  R. Kopito,et al.  Aggresomes: A Cellular Response to Misfolded Proteins , 1998, The Journal of cell biology.

[143]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[144]  J. Hardy,et al.  Genetic classification of primary neurodegenerative disease. , 1998, Science.

[145]  N. Eberhardt,et al.  A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation. , 1998, The Biochemical journal.

[146]  P. Westermark,et al.  Quantitative immunohistochemical analysis of islet amyloid polypeptide (IAPP) in normal, impaired glucose tolerant, and diabetic cats. , 1998, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[147]  E. D. de Koning,et al.  Macrophages and pancreatic islet amyloidosis. , 1998, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[148]  B. Ahrén,et al.  B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. , 1997, Biochemical and biophysical research communications.

[149]  F. Sundler,et al.  Islet amyloid polypeptide and insulin gene expression are regulated in parallel by glucose in vivo in rats. , 1996, The American journal of physiology.

[150]  W. Soeller,et al.  Treatment With Growth Hormone and Dexamethasone in Mice Transgenic for Human Islet Amyloid Polypeptide Causes Islet Amyloidosis and β-Cell Dysfunction , 1996, Diabetes.

[151]  W. Soeller,et al.  Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[152]  D. Steiner,et al.  Effects of beta cell granule components on human islet amyloid polypeptide fibril formation , 1996, FEBS letters.

[153]  B. Kagan,et al.  Pore Formation by the Cytotoxic Islet Amyloid Peptide Amylin (*) , 1996, The Journal of Biological Chemistry.

[154]  N. Eberhardt,et al.  Human islet amyloid polypeptide expression in COS-1 cells. A model of intracellular amyloidogenesis. , 1995, The American journal of pathology.

[155]  W. V. Van Nostrand,et al.  Amyloid β-Protein Inhibits Ubiquitin-dependent Protein Degradation in Vitro(*) , 1995, The Journal of Biological Chemistry.

[156]  P. Lansbury,et al.  Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? , 1993, Cell.

[157]  W. Duckworth,et al.  Identification of the metal associated with the insulin degrading enzyme. , 1991, Biochemical and biophysical research communications.

[158]  S. Kahn,et al.  Glucose Stimulates and Potentiates Islet Amyloid Polypeptide Secretion by the B-Cell , 1991, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[159]  C. Betsholtz,et al.  Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[160]  C. Betsholtz,et al.  Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. , 1989, The New England journal of medicine.

[161]  C. Betsholtz,et al.  Islet amyloid polypeptide (IAPP):cDNA cloning and identification of an amyloidogenic region associated with the species-specific occurrence of age-related diabetes mellitus. , 1989, Experimental cell research.

[162]  Kenneth H. Johnson,et al.  Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species , 1989, FEBS letters.

[163]  R. Holman,et al.  Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. , 1988, Diabetes research.

[164]  J. Rothbard,et al.  Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[165]  D. W. Hayden,et al.  Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[166]  G. Geissl [Tabes or diabetic neuropathy]. , 1978, MMW, Munchener medizinische Wochenschrift.

[167]  P. Westermark,et al.  Quantitative studies on amyloid in the islets of Langerhans. , 1972, Upsala journal of medical sciences.

[168]  G. Ludwig,et al.  [On occurrence of island amyloidosis of the pancreas in diabetes mellitus]. , 1967, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete.

[169]  E. Opie ON THE RELATION OF CHRONIC INTERSTITIAL PANCREATITIS TO THE ISLANDS OF LANGERHANS AND TO DIABETES MELUTUS , 1901, The Journal of experimental medicine.