The impact of retrotransposons on human genome evolution

[1]  Katsushi Tokunaga,et al.  Exon-trapping mediated by the human retrotransposon SVA. , 2009, Genome research.

[2]  M. Batzer,et al.  5'-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. , 2009, Genome research.

[3]  E. Kirkness,et al.  Mobile elements create structural variation: analysis of a complete human genome. , 2009, Genome research.

[4]  E. Ostertag,et al.  L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. , 2009, Genes & development.

[5]  G. Church,et al.  Genome-Wide Identification of Human RNA Editing Sites by Parallel DNA Capturing and Sequencing , 2009, Science.

[6]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[7]  V. Belancio,et al.  The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition , 2009, PLoS genetics.

[8]  P. Deininger,et al.  Diverse cis factors controlling Alu retrotransposition: what causes Alu elements to die? , 2009, Genome research.

[9]  M. Batzer,et al.  An alternative pathway for Alu retrotransposition suggests a role in DNA double-strand break repair. , 2009, Genomics.

[10]  D. Gautheret,et al.  Using Alu elements as polyadenylation sites: A case of retroposon exaptation. , 2009, Molecular biology and evolution.

[11]  N. Vinckenbosch,et al.  RNA-based gene duplication: mechanistic and evolutionary insights , 2009, Nature Reviews Genetics.

[12]  J. Brookfield,et al.  Source gene composition and gene conversion of the AluYh and AluYi lineages of retrotransposons , 2009, BMC Evolutionary Biology.

[13]  M. Batzer,et al.  Chromosomal Inversions between Human and Chimpanzee Lineages Caused by Retrotransposons , 2008, PloS one.

[14]  R. Cordaux The human genome in the LINE of fire , 2008, Proceedings of the National Academy of Sciences.

[15]  M. Batzer,et al.  L1 recombination-associated deletions generate human genomic variation , 2008, Proceedings of the National Academy of Sciences.

[16]  Ryan E. Mills,et al.  Active Alu retrotransposons in the human genome. , 2008, Genome research.

[17]  H. Kazazian,et al.  Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites , 2008, Cell.

[18]  B. Tian,et al.  Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3′-end of genes , 2008, Nucleic acids research.

[19]  P. Deininger,et al.  LINE-1 ORF1 protein enhances Alu SINE retrotransposition. , 2008, Gene.

[20]  G. Carmichael,et al.  Alu element‐mediated gene silencing , 2008, The EMBO journal.

[21]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[22]  P. Deininger,et al.  The impact of multiple splice sites in human L1 elements. , 2008, Gene.

[23]  P. Deininger,et al.  Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. , 2008, Genome research.

[24]  H. Wichman,et al.  Loss of LINE-1 Activity in the Megabats , 2008, Genetics.

[25]  S. Tyekucheva,et al.  The genome-wide determinants of human and chimpanzee microsatellite evolution. , 2007, Genome research.

[26]  J. Jurka,et al.  Repetitive sequences in complex genomes: structure and evolution. , 2007, Annual review of genomics and human genetics.

[27]  J. Brosius,et al.  Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). , 2007, Genome research.

[28]  E. Ostertag,et al.  A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. , 2007, Genome research.

[29]  H. Kazazian,et al.  Progress in understanding the biology of the human mutagen LINE‐1 , 2007, Human mutation.

[30]  G. Schumann APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. , 2007, Biochemical Society transactions.

[31]  I. Arkhipova,et al.  Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes , 2007, Proceedings of the National Academy of Sciences.

[32]  M. Batzer,et al.  Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome , 2007, Nucleic acids research.

[33]  M. Stoneking,et al.  In search of polymorphic Alu insertions with restricted geographic distributions. , 2007, Genomics.

[34]  David N. Messina,et al.  Evolutionary and Biomedical Insights from the Rhesus Macaque Genome , 2007, Science.

[35]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[36]  Ryan E. Mills,et al.  Which transposable elements are active in the human genome? , 2007, Trends in genetics : TIG.

[37]  S. Boissinot,et al.  Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. , 2007, Gene.

[38]  J. Jurka,et al.  Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. , 2007, Trends in genetics : TIG.

[39]  J. V. Moran,et al.  Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres , 2007, Nature.

[40]  Jerilyn A. Walker,et al.  Mobile element-based forensic genomics , 2007 .

[41]  C. Férec,et al.  A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full‐length LINE‐1 element , 2007, Human mutation.

[42]  M. Batzer,et al.  SINEs of a nearly perfect character. , 2006, Systematic biology.

[43]  M. Batzer,et al.  Emergence of primate genes by retrotransposon-mediated sequence transduction , 2006, Proceedings of the National Academy of Sciences.

[44]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[45]  J. Volff Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[46]  N. Yang,et al.  L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells , 2006, Nature Structural &Molecular Biology.

[47]  A. Smit,et al.  Functional noncoding sequences derived from SINEs in the mammalian genome. , 2006, Genome research.

[48]  Matthew D. Dyer,et al.  Human genomic deletions mediated by recombination between Alu elements. , 2006, American journal of human genetics.

[49]  S. Boissinot,et al.  Fitness cost of LINE-1 (L1) activity in humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Eytan Domany,et al.  Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes , 2006, BMC Genomics.

[51]  Li Wang,et al.  Evolutionary scenario for acquisition of CAG repeats in human SCA1 gene. , 2006, Gene.

[52]  M. Batzer,et al.  Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. , 2006, Gene.

[53]  Richard Cordaux,et al.  Estimating the retrotransposition rate of human Alu elements. , 2006, Gene.

[54]  M. Batzer,et al.  Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[56]  Valer Gotea,et al.  Do transposable elements really contribute to proteomes? , 2006, Trends in genetics : TIG.

[57]  M. Batzer,et al.  Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Stephen L. Gasior,et al.  The human LINE-1 retrotransposon creates DNA double-strand breaks. , 2006, Journal of molecular biology.

[59]  Ryan E. Mills,et al.  Recently mobilized transposons in the human and chimpanzee genomes. , 2006, American journal of human genetics.

[60]  P. Deininger,et al.  LINE-1 RNA splicing and influences on mammalian gene expression , 2006, Nucleic acids research.

[61]  E. Lander,et al.  A large family of ancient repeat elements in the human genome is under strong selection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Stéphane Boissinot,et al.  Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. , 2005, Genome research.

[63]  M. Batzer,et al.  Retrotransposable elements and human disease. , 2006, Genome dynamics.

[64]  Jerilyn A. Walker,et al.  SVA elements: a hominid-specific retroposon family. , 2005, Journal of molecular biology.

[65]  A. Reymond,et al.  Emergence of Young Human Genes after a Burst of Retroposition in Primates , 2005, PLoS biology.

[66]  T. Heidmann,et al.  Role of poly(A) tail length in Alu retrotransposition. , 2005, Genomics.

[67]  Liane Gagnier,et al.  Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. , 2005, Genome research.

[68]  J. V. Moran,et al.  Multiple Fates of L1 Retrotransposition Intermediates in Cultured Human Cells , 2005, Molecular and Cellular Biology.

[69]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[70]  Jeffrey S. Han,et al.  Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. , 2005, Genome research.

[71]  J. Brosius,et al.  Alu-SINE exonization: en route to protein-coding function. , 2005, Molecular biology and evolution.

[72]  M. Batzer,et al.  Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages , 2005, Nucleic acids research.

[73]  P. Stenson,et al.  A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease , 2005, Human Genetics.

[74]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[75]  M. Batzer,et al.  Alu retrotransposition-mediated deletion. , 2005, Journal of molecular biology.

[76]  M. Batzer,et al.  Under the genomic radar: the stealth model of Alu amplification. , 2005, Genome research.

[77]  Jinchuan Xing,et al.  Alu insertion loci and platyrrhine primate phylogeny. , 2005, Molecular phylogenetics and evolution.

[78]  H. Soifer,et al.  A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon , 2005, Nucleic acids research.

[79]  M. Batzer,et al.  Evolution of the master Alu gene(s) , 1991, Journal of Molecular Evolution.

[80]  Jinchuan Xing,et al.  Alu element mutation spectra: molecular clocks and the effect of DNA methylation. , 2004, Journal of molecular biology.

[81]  Alexander Rich,et al.  Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome , 2004, PLoS biology.

[82]  P. Pevzner,et al.  Whole-genome analysis of Alu repeat elements reveals complex evolutionary history. , 2004, Genome research.

[83]  E. Meese,et al.  The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. , 2004, Genome research.

[84]  Deepak Grover,et al.  Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements , 2004, BMC Evolutionary Biology.

[85]  M. Batzer,et al.  Retrotransposition of Alu elements: how many sources? , 2004, Trends in genetics : TIG.

[86]  Circe W. Tsui,et al.  Natural Genetic Variation Caused by Transposable Elements in Humans , 2004, Genetics.

[87]  T. Bestor,et al.  Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L , 2004, Nature.

[88]  T. Matise,et al.  Widespread RNA editing of embedded alu elements in the human transcriptome. , 2004, Genome research.

[89]  Zipora Y. Fligelman,et al.  Systematic identification of abundant A-to-I editing sites in the human transcriptome , 2004, Nature Biotechnology.

[90]  J. Schmitz,et al.  Primate jumping genes elucidate strepsirrhine phylogeny. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[92]  S. Boissinot,et al.  The insertional history of an active family of L1 retrotransposons in humans. , 2004, Genome research.

[93]  Brian J. Duistermars,et al.  Distinguishing humans from great apes with AluYb8 repeats. , 2004, Journal of molecular biology.

[94]  Jinchuan Xing,et al.  Differential alu mobilization and polymorphism among the human and chimpanzee lineages. , 2004, Genome research.

[95]  Jef D. Boeke,et al.  A highly active synthetic mammalian retrotransposon , 2004, Nature.

[96]  Jef D. Boeke,et al.  Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes , 2004, Nature.

[97]  P. Herron,et al.  Mobile DNA II , 2004, Heredity.

[98]  C. Schmid,et al.  Alu's dimeric consensus sequence destabilizes its transcripts. , 2004, Gene.

[99]  J. Jurka,et al.  Simple repetitive DNA sequences from primates: Compilation and analysis , 1995, Journal of Molecular Evolution.

[100]  Brenton R Graveley,et al.  The origins and implications of Aluternative splicing. , 2004, Trends in genetics : TIG.

[101]  C. Schmid,et al.  Flanking sequences of an Alu source stimulate transcription in vitro by interacting with sequence-specific transcription factors , 2004, Journal of Molecular Evolution.

[102]  Ravi Kumar,et al.  Structure and Evolution Of , 2004 .

[103]  J. V. Moran,et al.  A YY1-binding site is required for accurate human LINE-1 transcription initiation. , 2004, Nucleic acids research.

[104]  Jerilyn A. Walker,et al.  Genome-wide analysis of the human Alu Yb-lineage , 2004, Human Genomics.

[105]  E. Ostertag,et al.  SVA elements are nonautonomous retrotransposons that cause disease in humans. , 2003, American journal of human genetics.

[106]  J. V. Moran,et al.  Allelic heterogeneity in LINE-1 retrotransposition activity. , 2003, American journal of human genetics.

[107]  P. Deininger,et al.  RNA truncation by premature polyadenylation attenuates human mobile element activity , 2003, Nature Genetics.

[108]  M. Batzer,et al.  Alu elements and hominid phylogenetics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[109]  E. Eichler,et al.  An Alu transposition model for the origin and expansion of human segmental duplications. , 2003, American journal of human genetics.

[110]  N. Yang,et al.  An important role for RUNX3 in human L1 transcription and retrotransposition. , 2003, Nucleic acids research.

[111]  Thierry Heidmann,et al.  LINE-mediated retrotransposition of marked Alu sequences , 2003, Nature Genetics.

[112]  Jerilyn A. Walker,et al.  Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. , 2003, Genome research.

[113]  R. Maraia Faculty Opinions recommendation of The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. , 2003 .

[114]  Noam Shomron,et al.  The Birth of an Alternatively Spliced Exon: 3' Splice-Site Selection in Alu Exons , 2003, Science.

[115]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. V. Moran,et al.  ATLAS: a system to selectively identify human-specific L1 insertions. , 2003, American journal of human genetics.

[117]  Michael J Bamshad,et al.  Human population genetic structure and inference of group membership. , 2003, American journal of human genetics.

[118]  E. Eichler,et al.  Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome. , 2003, Genome research.

[119]  Jef D Boeke,et al.  Human L1 element target‐primed reverse transcription in vitro , 2002, The EMBO journal.

[120]  Jef D Boeke,et al.  Molecular archeology of L1 insertions in the human genome , 2002, Genome Biology.

[121]  Lisa Deininger,et al.  Active Alu element "A-tails": size does matter. , 2002, Genome research.

[122]  J. Volff Sex determination in fish , 2002, Genome Biology.

[123]  Giovanni Parmigiani,et al.  Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo , 2002, Cell.

[124]  J. V. Moran,et al.  Genomic Deletions Created upon LINE-1 Retrotransposition , 2002, Cell.

[125]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[126]  A. Weiner SINEs and LINEs: the art of biting the hand that feeds you. , 2002, Current opinion in cell biology.

[127]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[128]  T. Honjo,et al.  DNA Double-Strand Breaks , 2002, The Journal of experimental medicine.

[129]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[130]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[131]  John M. Greally,et al.  Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[132]  A. Nekrutenko,et al.  Transposable elements are found in a large number of human protein-coding genes. , 2001, Trends in genetics : TIG.

[133]  M. Speek Antisense Promoter of Human L1 Retrotransposon Drives Transcription of Adjacent Cellular Genes , 2001, Molecular and Cellular Biology.

[134]  M. Stoneking,et al.  Phylogenetic Analysis of the Friedreich Ataxia GAA Trinucleotide Repeat , 2001, Journal of Molecular Evolution.

[135]  Jef D. Boeke,et al.  Human L1 Retrotransposition: cisPreference versus trans Complementation , 2001, Molecular and Cellular Biology.

[136]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[137]  T. Shaikh,et al.  Cis-acting influences on Alu RNA levels. , 2000, Nucleic acids research.

[138]  M. Batzer,et al.  Potential gene conversion and source genes for recently integrated Alu elements. , 2000, Genome research.

[139]  P. Deininger,et al.  Upstream flanking sequences and transcription of SINEs. , 2000, Journal of molecular biology.

[140]  J A Bailey,et al.  Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[141]  M. Boguski,et al.  Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.

[142]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[143]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[144]  N Okada,et al.  SINE insertions: powerful tools for molecular systematics. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[145]  T. Heidmann,et al.  Members of the SRY family regulate the human LINE retrotransposons. , 2000, Nucleic acids research.

[146]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[147]  M. Batzer,et al.  Alu repeats and human disease. , 1999, Molecular genetics and metabolism.

[148]  Haig H. Kazazian,et al.  An estimated frequency of endogenous insertional mutations in humans , 1999, Nature Genetics.

[149]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[150]  M. Lyon,et al.  X-Chromosome inactivation: a repeat hypothesis , 1998, Cytogenetic and Genome Research.

[151]  M. Stoneking,et al.  Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa. , 1997, Genome research.

[152]  T. Shaikh,et al.  cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. , 1997, Journal of molecular biology.

[153]  N. Okada,et al.  Molecular evidence from retroposons that whales form a clade within even-toed ungulates , 1997, Nature.

[154]  Y. Sakaki,et al.  Identification of critical CpG sites for repression of L1 transcription by DNA methylation. , 1997, Gene.

[155]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[156]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[157]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[158]  Kelvin Hsu,et al.  Monomeric scAlu and nascent dimeric Alu RNAs induced by adenovirus are assembled into SRP9/14-containing RNPs in HeLa cells. , 1996, Nucleic acids research.

[159]  J. Weber,et al.  Alu repeats: a source for the genesis of primate microsatellites. , 1995, Genomics.

[160]  M. Batzer,et al.  Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution , 1995, Molecular and cellular biology.

[161]  R. J. Herrera,et al.  African origin of human-specific polymorphic Alu insertions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[162]  C. Schmid,et al.  Alu repeated DNAs are differentially methylated in primate germ cells. , 1994, Nucleic acids research.

[163]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[164]  N. Perna,et al.  Alu insertion polymorphism: a new type of marker for human population studies. , 1992, Human biology.

[165]  C. Hutchison,et al.  Master genes in mammalian repetitive DNA amplification. , 1992, Trends in genetics : TIG.

[166]  D. Labuda,et al.  Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. , 1991, The Journal of biological chemistry.

[167]  P. Ball When size does matter , 1991, Nature.

[168]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[169]  A. Dugaiczyk,et al.  Newly arisen DNA repeats in primate phylogeny. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[170]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[171]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[172]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[173]  B. Mcclintock,et al.  Controlling elements and the gene. , 1956, Cold Spring Harbor symposia on quantitative biology.