Composite wavelet representations for reconstruction of missing data

We shall introduce a novel methodology for data reconstruction and recovery, based on composite wavelet representations. These representations include shearlets and crystallographic wavelets, among others, and they allow for an increased directional sensitivity in comparison with the standard multiscale techniques. Our new approach allows us to recover missing data, due to sparsity of composite wavelet representations, especially when compared to inpainting algorithms induced by traditional wavelet representations, and also due to the flexibility of our variational approach.

[1]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[2]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[3]  Stefano Soatto,et al.  3D shape from anisotropic diffusion , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[4]  Edward Wilson,et al.  Some simple Haar-type wavelets in higher dimensions , 2007 .

[5]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[6]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[7]  Keith F. Taylor C *-Algebras of Crystal Groups , 1989 .

[8]  G. Folland A course in abstract harmonic analysis , 1995 .

[9]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[10]  Wojciech Czaja,et al.  Multiscale and multidirectional tight frames for image analysis , 2013 .

[11]  Wang-Q Lim,et al.  The Theory of Wavelets with Composite Dilations , 2006 .

[12]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, IEEE Trans. Image Process..

[13]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  G. Easley,et al.  Shearlet Based Total Variation for Denoising , 2022 .

[15]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[16]  Wang-Q Lim,et al.  Wavelets with composite dilations and their MRA properties , 2006 .

[17]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[18]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[19]  Y. Meyer,et al.  Variational methods in image processing , 2004 .

[20]  Keith F. Taylor,et al.  Wavelets with Crystal Symmetry Shifts , 2011 .

[21]  Han Ding,et al.  Nonlinear diffusions in topology optimization , 2004 .

[22]  Xiaosheng Zhuang,et al.  Analysis of Inpainting via Clustered Sparsity and Microlocal Analysis , 2012, Journal of Mathematical Imaging and Vision.

[23]  Heike Emmerich,et al.  The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models , 2003 .

[24]  Andrea L. Bertozzi,et al.  Wavelet analogue of the Ginzburg–Landau energy and its Γ-convergence , 2010 .

[25]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[26]  S. Mallat A wavelet tour of signal processing , 1998 .

[27]  Andrea L. Bertozzi,et al.  Analysis of the Wavelet Ginzburg-Landau Energy in Image Applications with Edges , 2013, SIAM J. Imaging Sci..

[28]  Jeffrey D. Blanchard,et al.  Crystallographic Haar-Type Composite Dilation Wavelets , 2011 .

[29]  George W. Mackey,et al.  Unitary representations of group extensions. I , 1958 .

[30]  S. Esedoglu,et al.  ANALYSIS OF A TWO-SCALE CAHN-HILLIARD MODEL FOR IMAGE INPAINTING , 2006 .

[31]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[32]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[33]  Yoon Mo Jung,et al.  Multiphase Image Segmentation via Modica-Mortola Phase Transition , 2007, SIAM J. Appl. Math..

[34]  Robert Houska,et al.  The nonexistence of shearlet scaling functions , 2012 .

[35]  Wang-Q Lim,et al.  Shearlets and Optimally Sparse Approximations , 2011, ArXiv.