Understanding the "antikick" in the merger of binary black holes.

The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

[1]  A. Peres Classical Radiation Recoil , 1962 .

[2]  A. Trautman,et al.  Some spherical gravitational waves in general relativity , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[4]  M. Haugan,et al.  Gravitational radiation from particles falling along the symmetry axis into a Kerr black hole: the momentum radiated , 1983 .

[5]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[6]  K. Tod Analogue of the past horizon in the Robinson-Trautman metrics , 1989 .

[7]  P. Chruściel Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation , 1991 .

[8]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.

[9]  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[10]  Head-on collisions of unequal mass black holes: Close-limit predictions , 1996, gr-qc/9611022.

[11]  E. Chow,et al.  Apparent horizons in vacuum Robinson-Trautman spacetimes , 1995, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[12]  I. Soares,et al.  Gravitational wave emission from the numerical evolution of Robinson-Trautman spacetimes: A treatment in the nonlinear regime , 2004 .

[13]  Abhay Ashtekar,et al.  Multipole moments of isolated horizons , 2004 .

[14]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[15]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[16]  C. Will,et al.  Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order , 2005, astro-ph/0507692.

[17]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[18]  Gravitational recoil from binary black hole mergers: The close-limit approximation , 2006 .

[19]  T. Damour,et al.  Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.

[20]  Introduction to dynamical horizons in numerical relativity , 2006, gr-qc/0604015.

[21]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007 .

[22]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2007, Physical review letters.

[23]  Richard A. Matzner,et al.  Gravitational Recoil from Spinning Binary Black Hole Mergers , 2007, gr-qc/0701143.

[24]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[25]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[26]  David Merritt,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[27]  José A González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[28]  A. Saa,et al.  Gravitational wave recoil in Robinson-Trautman spacetimes , 2008, 0809.3039.

[29]  S. McWilliams,et al.  Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis , 2007, 0707.0301.

[30]  Alessia Gualandris,et al.  Ejection of Supermassive Black Holes from Galaxy Cores , 2007, 0708.0771.

[31]  J. Tafel,et al.  Horizons in Robinson–Trautman spacetimes , 2008, 0805.3978.

[32]  Y. Mino,et al.  Gravitational radiation from plunging orbits: Perturbative study , 2008, 0809.2814.

[33]  S. Komossa,et al.  Tidal Disruption Flares from Recoiling Supermassive Black Holes , 2008, 0807.0223.

[34]  Y. Zlochower,et al.  Further insight into gravitational recoil , 2007, 0708.4048.

[35]  THE EFFICIENCY OF GRAVITATIONAL BREMSSTRAHLUNG PRODUCTION IN THE COLLISION OF TWO SCHWARZSCHILD BLACK HOLES , 2008, 0804.3610.

[36]  H. de Oliveira,et al.  Numerical evolution of radiative Robinson–Trautman spacetimes , 2008, 0803.4278.

[37]  D. Shoemaker,et al.  Superkicks in hyperbolic encounters of binary black holes. , 2008, Physical review letters.

[38]  J. Podolský,et al.  Past horizons in Robinson-Trautman spacetimes with a cosmological constant , 2009, 0911.5317.

[39]  C. Stivers Class , 2010 .

[40]  L. Blanchet,et al.  The close-limit approximation for black hole binaries with post-Newtonian initial conditions , 2009, 0910.4593.

[41]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.