THB-splines multi-patch parameterization for multiply-connected planar domains via Template Segmentation
暂无分享,去创建一个
[1] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[2] Bert Jüttler,et al. Planar domain parameterization with THB-splines , 2015, Comput. Aided Geom. Des..
[3] Thomas J. R. Hughes,et al. Conformal solid T-spline construction from boundary T-spline representations , 2013 .
[4] C. Schwab,et al. Boundary Element Methods , 2010 .
[5] Bert Jüttler,et al. Adaptive CAD model (re-)construction with THB-splines , 2014, Graph. Model..
[6] Michael Barton,et al. Exploring quadrangulations , 2014, TOGS.
[7] M. Diligenti,et al. New efficient assembly in Isogeometric Analysis for Symmetric Galerkin Boundary Element Method , 2017 .
[8] Bert Jüttler,et al. Planar multi-patch domain parameterization via patch adjacency graphs , 2017, Comput. Aided Des..
[9] Kai Hormann,et al. Mean value coordinates for arbitrary planar polygons , 2006, TOGS.
[10] Jens Gravesen,et al. Planar Parametrization in Isogeometric Analysis , 2012, MMCS.
[11] M. Guiggiani,et al. Direct computation of Cauchy principal value integrals in advanced boundary elements , 1987 .
[12] Bruno Lévy,et al. Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.
[13] Gábor Renner,et al. Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..
[14] T. Rabczuk,et al. A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .
[15] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[16] Jiansong Deng,et al. Two-dimensional domain decomposition based on skeleton computation for parameterization and isogeometric analysis , 2015 .
[17] Katya Scheinberg,et al. Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..
[18] Alessandra Sestini,et al. Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs , 2018, J. Comput. Appl. Math..
[19] Bert Jüttler,et al. Isogeometric segmentation. Part II: On the segmentability of contractible solids with non-convex edges , 2014, Graph. Model..
[20] Kai Hormann,et al. Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[21] Bert Jüttler,et al. THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .
[22] Bert Jüttler,et al. Layered Reeb graphs for three-dimensional manifolds in boundary representation , 2015, Comput. Graph..
[23] Giovanni Monegato,et al. Numerical evaluation of hypersingular integrals , 1994 .
[24] David Salomon,et al. Computer Graphics and Geometric Modeling , 1999, Springer New York.
[25] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[26] Mario Kapl,et al. Isogeometric segmentation: The case of contractible solids without non-convex edges , 2014, Comput. Aided Des..
[27] Peter Duren,et al. HARMONIC MAPPINGS OF MULTIPLY CONNECTED DOMAINS , 1997 .
[28] Gerald E. Farin,et al. Discrete Coons patches , 1999, Comput. Aided Geom. Des..
[29] Marco Sciandrone,et al. On the Global Convergence of Derivative-Free Methods for Unconstrained Optimization , 2002, SIAM J. Optim..
[30] Ernst Rank,et al. Geometric modeling, isogeometric analysis and the finite cell method , 2012 .
[31] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[32] Hendrik Speleers,et al. Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..
[33] Falai Chen,et al. Planar domain parameterization for isogeometric analysis based on Teichmüller mapping , 2016 .
[34] Ming Li,et al. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization , 2017, ArXiv.