THB-splines multi-patch parameterization for multiply-connected planar domains via Template Segmentation

Abstract Given a planar multiply-connected domain Ω , we provide a multi-patch parameterization exploiting a segmentation algorithm and the construction of templates. The segmentation is a fundamental step which allows to split the input domain into patches topologically equivalent to quadrilaterals. Templates are prototypes of segmentation that will be chosen according to the shape of the given domain. We will compute a bijective harmonic mapping h defined between the input Ω and the chosen template Ω ˆ . The segmentation will be transferred from the prototype template to the input Ω by approximating the inverse mapping. Templates are equipped with a multi-patch structure and each patch Ω ˆ ( i ) is parametrized individually by a geometry mapping G i . The final multi-patch parameterization of Ω is achieved exploiting the combination of each geometry mapping G i and the inverse of the mapping h obtained by projection into the THB-spline space.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Bert Jüttler,et al.  Planar domain parameterization with THB-splines , 2015, Comput. Aided Geom. Des..

[3]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[4]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[5]  Bert Jüttler,et al.  Adaptive CAD model (re-)construction with THB-splines , 2014, Graph. Model..

[6]  Michael Barton,et al.  Exploring quadrangulations , 2014, TOGS.

[7]  M. Diligenti,et al.  New efficient assembly in Isogeometric Analysis for Symmetric Galerkin Boundary Element Method , 2017 .

[8]  Bert Jüttler,et al.  Planar multi-patch domain parameterization via patch adjacency graphs , 2017, Comput. Aided Des..

[9]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[10]  Jens Gravesen,et al.  Planar Parametrization in Isogeometric Analysis , 2012, MMCS.

[11]  M. Guiggiani,et al.  Direct computation of Cauchy principal value integrals in advanced boundary elements , 1987 .

[12]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[13]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[14]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[15]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[16]  Jiansong Deng,et al.  Two-dimensional domain decomposition based on skeleton computation for parameterization and isogeometric analysis , 2015 .

[17]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[18]  Alessandra Sestini,et al.  Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs , 2018, J. Comput. Appl. Math..

[19]  Bert Jüttler,et al.  Isogeometric segmentation. Part II: On the segmentability of contractible solids with non-convex edges , 2014, Graph. Model..

[20]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[21]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[22]  Bert Jüttler,et al.  Layered Reeb graphs for three-dimensional manifolds in boundary representation , 2015, Comput. Graph..

[23]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[24]  David Salomon,et al.  Computer Graphics and Geometric Modeling , 1999, Springer New York.

[25]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[26]  Mario Kapl,et al.  Isogeometric segmentation: The case of contractible solids without non-convex edges , 2014, Comput. Aided Des..

[27]  Peter Duren,et al.  HARMONIC MAPPINGS OF MULTIPLY CONNECTED DOMAINS , 1997 .

[28]  Gerald E. Farin,et al.  Discrete Coons patches , 1999, Comput. Aided Geom. Des..

[29]  Marco Sciandrone,et al.  On the Global Convergence of Derivative-Free Methods for Unconstrained Optimization , 2002, SIAM J. Optim..

[30]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[31]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[32]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[33]  Falai Chen,et al.  Planar domain parameterization for isogeometric analysis based on Teichmüller mapping , 2016 .

[34]  Ming Li,et al.  Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization , 2017, ArXiv.