Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b.

[1]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[2]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[3]  C. Fernández-Hernando,et al.  Myoferlin Regulates Vascular Endothelial Growth Factor Receptor-2 Stability and Function* , 2007, Journal of Biological Chemistry.

[4]  Renzhi Han,et al.  Dysferlin and muscle membrane repair. , 2007, Current opinion in cell biology.

[5]  J. T. Dunnen,et al.  AHNAK a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  M. Sinnreich,et al.  Mutation impact on dysferlin inferred from database analysis and computer-based structural predictions , 2006, Journal of the Neurological Sciences.

[7]  P. Mcneil,et al.  Requirement for Annexin A1 in Plasma Membrane Repair* , 2006, Journal of Biological Chemistry.

[8]  P. Avan,et al.  Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse , 2006, Cell.

[9]  C. Ki,et al.  Clinical and Genetic Analysis of Korean Patients with Miyoshi Myopathy: Identification of Three Novel Mutations in the DYSF Gene , 2006, Journal of Korean medical science.

[10]  J. García-Verdugo,et al.  Absence of Dysferlin Alters Myogenin Expression and Delays Human Muscle Differentiation “in Vitro”* , 2006, Journal of Biological Chemistry.

[11]  T. Südhof,et al.  Structural Basis for a Munc13–1 Homodimer to Munc13–1/RIM Heterodimer Switch , 2006, PLoS biology.

[12]  J. Thornton,et al.  A method for localizing ligand binding pockets in protein structures , 2005, Proteins.

[13]  D. Davis,et al.  Normal myoblast fusion requires myoferlin , 2005, Development.

[14]  N. Bresolin,et al.  Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies , 2005, Human mutation.

[15]  C. Béroud,et al.  Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies , 2005, Human mutation.

[16]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[17]  Miron Livny,et al.  RECOORD: A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank , 2005, Proteins.

[18]  K. Kameyama,et al.  Dysferlin Interacts with Affixin (β-Parvin) at the Sarcolemma , 2005 .

[19]  K. Kameyama,et al.  Dysferlin interacts with affixin (beta-parvin) at the sarcolemma. , 2005, Journal of neuropathology and experimental neurology.

[20]  I. Nonaka,et al.  Dysferlinopathy associated with rigid spine syndrome , 2004, Neuropathology : official journal of the Japanese Society of Neuropathology.

[21]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[22]  Y. Hayashi,et al.  Dysferlin mutation analysis in a group of Italian patients with limb‐girdle muscular dystrophy and Miyoshi myopathy , 2004, European journal of neurology.

[23]  Tim Hubbard,et al.  Domain insertions in protein structures. , 2004, Journal of molecular biology.

[24]  Peer Bork,et al.  SMART 4.0: towards genomic data integration , 2004, Nucleic Acids Res..

[25]  B. Hyman,et al.  Dysferlin Interacts with Annexins A1 and A2 and Mediates Sarcolemmal Wound-healing* , 2003, Journal of Biological Chemistry.

[26]  N. Bresolin,et al.  Molecular analysis of LGMD-2B and MM patients: identification of novel DYSF mutations and possible founder effect in the Italian population , 2003, Neuromuscular Disorders.

[27]  Janet M. Thornton,et al.  An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis , 2003, Bioinform..

[28]  I. Nonaka,et al.  Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients , 2003, Journal of the Neurological Sciences.

[29]  Y. Itoyama,et al.  Dysferlin mutations in Japanese Miyoshi myopathy , 2003, Neurology.

[30]  Chien-Chang Chen,et al.  Defective membrane repair in dysferlin-deficient muscular dystrophy , 2003, Nature.

[31]  M. Nilges,et al.  Refinement of protein structures in explicit solvent , 2003, Proteins.

[32]  A. Joachimiak,et al.  Crystal structure of the TSP-1 type 1 repeats , 2002, The Journal of cell biology.

[33]  D. Davis,et al.  Calcium-sensitive Phospholipid Binding Properties of Normal and Mutant Ferlin C2 Domains* , 2002, The Journal of Biological Chemistry.

[34]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[35]  P Bork,et al.  Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. , 2001, Genome research.

[36]  I. Nonaka,et al.  The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. , 2001, Human molecular genetics.

[37]  J. Hus,et al.  A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings , 2001, Journal of biomolecular NMR.

[38]  J. Beckmann,et al.  Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies) , 2000, Neuromuscular Disorders.

[39]  D. Corey,et al.  Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. , 2000, Journal of cell science.

[40]  K. Bushby,et al.  The third human FER-1-like protein is highly similar to dysferlin. , 2000, Genomics.

[41]  Gottfried Otting,et al.  Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments , 2000 .

[42]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[43]  M. Cohen-Salmon,et al.  A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness , 1999, Nature Genetics.

[44]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[45]  M. Nilges,et al.  Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation , 1999, Journal of biomolecular NMR.

[46]  J. Beckmann,et al.  A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B , 1998, Nature Genetics.

[47]  Pieter J. de Jong,et al.  Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy , 1998, Nature Genetics.

[48]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[49]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[50]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[51]  J. Heath,et al.  Crystal structure of a cytokine‐binding region of gp130 , 1998, The EMBO journal.

[52]  S. Ward,et al.  A nematode gene required for sperm vesicle fusion. , 1997, Journal of cell science.

[53]  Tsuneya Ikezu,et al.  Identification of Peptide and Protein Ligands for the Caveolin-scaffolding Domain , 1997, The Journal of Biological Chemistry.

[54]  J. Falke,et al.  The C2 domain calcium‐binding motif: Structural and functional diversity , 1996, Protein science : a publication of the Protein Society.

[55]  Roger L. Williams,et al.  Crystal structure of a mammalian phosphoinositide-specific phospholipase Cδ , 1996, Nature.

[56]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[57]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[58]  R. Laskowski SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. , 1995, Journal of molecular graphics.

[59]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[60]  Weontae Lee,et al.  A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity , 1994 .

[61]  M. Ultsch,et al.  The X-ray structure of a growth hormone–prolactin receptor complex , 1994, Nature.

[62]  L. Kay,et al.  Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity , 1994 .

[63]  S L Mowbray,et al.  Planar stacking interactions of arginine and aromatic side-chains in proteins. , 1994, Journal of molecular biology.

[64]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[65]  H. Kawai,et al.  Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. , 1986, Brain : a journal of neurology.