Simulation techniques of non-linear circuit dynamic behaviour

This paper presents analysis methods of non-linear circuits. These simulators must be capable to predict the non-linear behaviour of complex circuits such as frequency analog dividers and injection locked oscillators. Based on the harmonic balance technique, this paper presents two extensions of this method. It provides complete information on the non-linear behaviour of the device. In particular, synchronization bandwidths as well as power ranges for which the circuit can be synchronized are obtained from the stability loci drawn in the parameter space. Second, a noise analysis based on the frequency conversion technique is discussed. This analysis relies upon a description of linear or non-linear noise generators by means of correlation matrices and of circuit non-linearities by their conversion matrices. Two circuits examples are given to illustrate the great interest of these simulators.RésuméCet article présente les méthodes d’analyse et de simulation non linéaires du comportement dynamique des circuits. Basé sur l’application de l’équilibrage harmonique, deux extensions sont présentées. La première permet l’analyse des circuits autonomes, synchronisés ou libres tels que les oscillateurs et diviseurs de fréquence. Elle est basée sur une recherche des bifurcations et permet le calcul non linéaire des bandes de synchronisation d’un oscillateur ou l’analyse de la stabilité globale de ce même type de circuit. La deuxième présente la simulation des caractéristiques en bruit (spectres de bruit, facteur de bruit) de ces circuits. Elle est basée sur la représentation des non-linéarités par leurs matrices de conversion et des sources de bruit par leurs matrices de corrélation. Enfin deux exemples de circuits analysés par ces méthodes sont donnés.

[1]  R. Quere,et al.  Large signal design of broadband monolithic microwave frequency dividers , 1992, 1992 IEEE Microwave Symposium Digest MTT-S.

[2]  K. Kurokawa,et al.  Injection locking of microwave solid-state oscillators , 1973 .

[3]  Michael B. Steer,et al.  Computer-aided analysis of free-running microwave oscillators , 1991 .

[4]  Juan Obregon,et al.  The Spectral Balance: A General Method for Analysis of Nonlinear Microwave Circuits Driven by Non-Harmonically Related Generators , 1987, 1987 IEEE MTT-S International Microwave Symposium Digest.

[5]  Peter Russer,et al.  Noise calculations and experimental results of varactor tunable oscillators with significantly reduced phase noise , 1995 .

[6]  Alessandra Costanzo,et al.  State-of-the-art harmonic-balance simulation of forced nonlinear microwave circuits by the piecewise technique , 1992 .

[7]  Alessandra Costanzo,et al.  Harmonic-balance analysis of microwave oscillators with automatic suppression of degenerate solution , 1992 .

[8]  V. Rizzoli,et al.  General Stability Analysis of Periodic Steady-State Regimes in Nonlinear Microwave Circuits , 1985 .

[9]  Ingo Wolff,et al.  A unified framework for computer-aided noise analysis of linear and nonlinear microwave circuits , 1991 .

[10]  R. Knoechel,et al.  Noise and Transfer Properties of Harmonically Synchronized Oscillators , 1978, 1978 IEEE-MTT-S International Microwave Symposium Digest.

[11]  Jean-Christophe Nallatamby,et al.  A general program for steady state, stability, and FM noise analysis of microwave oscillators , 1990, IEEE International Digest on Microwave Symposium.

[12]  G.H.B. Hansson,et al.  Stability Criteria for Phase-Locked Oscillators , 1972 .

[13]  Franz X. Kärtner,et al.  Analysis of white and f-α noise in oscillators , 1990, Int. J. Circuit Theory Appl..

[14]  E. Calandra,et al.  Necessary and sufficient conditions for frequency entrainment of quasi-sinusoidal injection-synchronized oscillators , 1986 .

[15]  A. Sangiovanni-Vincentelli,et al.  Finding the steady-state response of analog and microwave circuits , 1988, Proceedings of the IEEE 1988 Custom Integrated Circuits Conference.

[16]  D. Hente,et al.  Frequency domain continuation method for the analysis and stability investigation of nonlinear microwave circuits , 1986 .

[18]  J. Teyssier,et al.  A new nonlinear I(V) model for FET devices including breakdown effects , 1994, IEEE Microwave and Guided Wave Letters.

[19]  Edouard Ngoya,et al.  Efficient algorithms for spectra calculations in nonlinear microwave circuits simulators , 1990 .

[20]  L. Gustafsson,et al.  On the Use of Describing Functions in the Study of Nonlinear Active Microwave Circuits , 1972 .

[21]  M. Steer,et al.  Nonlinear circuit analysis using the method of harmonic balance—A review of the art. Part I. Introductory concepts , 1991 .

[22]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[23]  A. Neri,et al.  State of the art and present trends in nonlinear microwave CAD techniques , 1988 .