Vision based object follower automated guided vehicle using compressive tracking and stereo-vision

Integration of a visual sensing system plays a vital role in automated navigation by providing a sensing ability of the surrounding environment. The problem of object following is challenging due to changes in appearance that can occur due to motion, pose, illumination and occlusion. The real-time implementation of a computer vision based object following system is presented in this paper. The position of the object to be followed is determined by processing a real time image feed from a calibrated stereo-camera. The method incorporates compressive tracking and stereo-vision based disparity mapping boosted with relocation of the tracking window using Speeded Up Robust Features (SURF). The proposed algorithm runs in real-time and performs favorably in terms of computational efficiency, accuracy and robustness.

[1]  Jeffrey Graham,et al.  Robot Tracking of Human Subjects in Field Environments , 2003 .

[2]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[4]  D. Lowe,et al.  Fast Matching of Binary Features , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[5]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[6]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[7]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[8]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[9]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[10]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[11]  Nishchal K. Verma,et al.  Object Matching Using Speeded Up Robust Features , 2016 .

[12]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[13]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[14]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Nishchal K. Verma,et al.  Template matching for inventory management using fuzzy color histogram and spatial filters , 2015, 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA).

[16]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[17]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[18]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[20]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[23]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[25]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[26]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..