A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems

A fully explicit, stabilized domain decomposition method for solving moderately stiff parabolic partial differential equations (PDEs) is presented. Writing the semi-discretized equations as a differential-algebraic equation (DAE) system where the interface continuity constraints between subdomains are enforced by Lagrange multipliers, the method uses the Runge-Kutta-Chebyshev projection scheme to integrate the DAE explicitly and to enforce the constraints by a projection. With mass lumping techniques and node-to-node matching grids, the method is fully explicit without solving any linear system. A stability analysis is presented to show the extended stability property of the method. The method is straightforward to implement and to parallelize. Numerical results demonstrate that it has excellent performance.

[1]  Linda Petzold,et al.  A Framework for the Analysis of Second Order Projection Methods ∗ , 2006 .

[2]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[3]  Jianping Zhu,et al.  On an Efficient Parallel Algorithm for Solving Time Dependent Partial Differential Equations , 1998 .

[4]  Tarek P. Mathew,et al.  Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I: Algorithms and numerical results , 1993 .

[5]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[6]  T. Dupont,et al.  A Finite Difference Domain Decomposition Algorithm for Numerical Solution of the Heat Equation , 1989 .

[7]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[8]  Xiao-Chuan Cai,et al.  Additive Schwarz algorithms for parabolic convection-diffusion equations , 1991 .

[9]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[10]  Jan G. Verwer,et al.  An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..

[11]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[12]  Morten D. Skogen,et al.  Domain Decomposition Algorithms Of Schwarz Type, Designed For Massively Parallel Computers , 1992 .

[13]  Rodolfo Bermejo,et al.  A $nite element semi-Lagrangian explicit Runge-Kutta-Chebyshev method for convection dominated reaction-di-usion problems , 2003 .

[14]  Uri M. Ascher,et al.  Stability of Computational Methods for Constrained Dynamics Systems , 1991, SIAM J. Sci. Comput..

[15]  P. Tallec,et al.  Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .

[16]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[17]  R. Tezaur Analysis Of Lagrange Multiplier Based Domain Decomposition , 1998 .

[18]  R. Glowinski,et al.  Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .

[19]  O. Botella,et al.  A high‐order mass‐lumping procedure for B‐spline collocation method with application to incompressible flow simulations , 2003 .

[20]  Tsun-Zee Mai,et al.  IPIC domain decomposition algorithm for parabolic problems , 2006, Appl. Math. Comput..

[21]  Amir Averbuch,et al.  Parallelizing implicit algorithms for time-dependent problems by parabolic domain decomposition , 1993 .

[22]  Xiao-Chuan Cai,et al.  Multiplicative Schwarz Methods for Parabolic Problems , 1994, SIAM J. Sci. Comput..

[23]  L. Shampine,et al.  RKC: an explicit solver for parabolic PDEs , 1998 .

[24]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[25]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[26]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .

[27]  Linda R. Petzold,et al.  Runge-Kutta-Chebyshev projection method , 2006, J. Comput. Phys..

[28]  J. Verwer Explicit Runge-Kutta methods for parabolic partial differential equations , 1996 .

[29]  Rodolfo Bermejo,et al.  A finite element semi-Lagrangian explicit Runge--Kutta--Chebyshev method for convection dominated reaction-diffusion problems , 2003 .

[30]  Shen R. Wu,et al.  Lumped mass matrix in explicit finite element method for transient dynamics of elasticity , 2006 .

[31]  Xian-He Sun,et al.  Stabilized Explicit-Implicit Domain Decomposition Methods for the Numerical Solution of Parabolic Equations , 2002, SIAM J. Sci. Comput..

[32]  Hong-Lin Liao,et al.  Unconditional Stability of Corrected Explicit-Implicit Domain Decomposition Algorithms for Parallel Approximation of Heat Equations , 2006, SIAM J. Numer. Anal..

[33]  Michel Lesoinne,et al.  An Efficient FETI Implementation on Distributed Shared Memory Machines with Independent Numbers of Subdomains and Processors , 1998 .

[34]  O. Widlund,et al.  A Domain Decomposition Method With Lagrange Multipliers For Linear Elasticity , 1999 .

[35]  Clint Dawson,et al.  Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences , 1994 .

[36]  Xuemin Tu,et al.  A domain decomposition discretization of parabolic problems , 2007, Numerische Mathematik.

[37]  Gert Lube,et al.  A non-overlapping DDM of Robin-Robin type for parabolic problems , 1999 .

[38]  Alfio Quarteroni,et al.  An Iterative Procedure with Interface Relaxation for Domain Decomposition Methods , 1988 .

[39]  P. Houwen,et al.  On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .

[40]  Charbel Farhat,et al.  An Optimal Lagrange Multiplier Based Domain Decomposition Method for Plate Bending Problems , 1995 .

[41]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[42]  J. Pasciak,et al.  An iterative method for elliptic problems on regions partitioned into substructures , 1986 .