Electrochemical activation and electrocatalytic enhancement of a hydride-forming metal alloy modified with palladium, platinum and nickel

The influence of the addition of polycrystalline Pt, Pd and Ni powders into hydride-forming metal alloy electrodes on the activation process, rate-capability and cycling stability has been evaluated. The metal powder additives were found to improve the activation rate and to decreased the overpotentials of the charge and discharge processes. The electrochemical properties of these modified electrodes were analysed in terms of a simplified form of a previously developed model. Electrochemical impedance spectroscopy measurements were performed to allow the validation of the model and the identification of kinetic and physicochemical parameters.

[1]  A. Visintín,et al.  The Electrochemical Performance of Pd‐Coated Metal Hydride Electrodes with Different Binding Additives in Alkaline Solution , 1998 .

[2]  H. Ploehn,et al.  Analysis of transient hydrogen uptake by metal alloy particles , 1996 .

[3]  G. Lindbergh,et al.  Kinetic study of a porous metal hydride electrode , 1999 .

[4]  Laura Mackail Recipes for success (Book Review) , 1998, IEEE Spectrum.

[5]  E. Akiba,et al.  The investigation of the Zr1−yTiy(Cr1−xNix)2–H2 system 0.0≤y≤1.0 and 0.0≤x≤1.0 Phase composition analysis and thermodynamic properties , 1998 .

[6]  S. S. Murthy,et al.  Metal hydrides : fundamentals and applications , 1998 .

[7]  M. Barak,et al.  Power Sources 4 , 1974 .

[8]  J. Joubert,et al.  Improvement of the electrochemical activity of ZrNiCr Laves phase hydride electrodes by secondary phase precipitation , 1996 .

[9]  J. Diard,et al.  Linear diffusion impedance. General expression and applications , 1999 .

[10]  Yong Yang,et al.  Influence of surface pretreatment and charge-discharge mode on cycle performance of metal hydride electrodes , 1999 .

[11]  S. Ovshinsky,et al.  A Nickel Metal Hydride Battery for Electric Vehicles , 1993, Science.

[12]  Stanford R. Ovshinsky,et al.  Nickel metal hydride: ready to serve , 1998 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  L. O. Valøen Metal hydrides for rechargeable batteries , 2000 .

[15]  T. Jacobsen,et al.  Diffusion impedance in planar, cylindrical and spherical symmetry , 1995 .

[16]  H. A. Peretti,et al.  Hydrogen absorption characteristics and electrochemical properties of Ti substituted Zr-based AB2 alloys , 2001 .

[17]  S. Ovshinsky,et al.  High performance Zr-based metal hydride alloys for nickel metal hydride batteries , 1999 .

[18]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[19]  Effect of Alloy Composition on the Structure of Zr Based Metal Alloys , 1999 .

[20]  A. Visintín,et al.  Electrochemical characterization of a hydride-forming metal alloy surface-modified with palladium , 2003 .

[21]  Y. Lei,et al.  Studies of electrochemical properties of TiNi alloy used as an MH electrode. II. Discharge kinetics , 1998 .

[22]  Ruben H. Milocco,et al.  Identifiability of sorption and diffusion processes using EIS: Application to the hydrogen reaction , 2005 .

[23]  A. Visintín,et al.  Activation process in hydrogen storage related to oxide layers formed on zirconium alloys , 2005 .

[24]  F. E. Little,et al.  Comparison of the Electrochemical Impedance Spectroscopy Characteristics of Insertion Electrode Materials Used in Secondary Metal Hydride and Lithium-Ion Electrodes , 2001 .

[25]  A. Züttel,et al.  Hydriding properties of the Zr(Cr0.5Ni0.5)(alpha) (1.75 <=alpha <= 3.5) alloy system , 1998 .

[26]  J. R. Johnson,et al.  Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries , 1994 .

[27]  Venkat R. Subramanian,et al.  Shrinking Core Model for the Discharge of a Metal Hydride Electrode , 2000 .

[28]  A. Visintín,et al.  Electrochemical impedance characterization of porous metal hydride electrodes , 2004 .