Modeling of aerodynamic forces in the Laplace domain with minimum number of augmented states for the design of active flutter suppression systems

A method is proposed by which an aeroservoelastic problem is brought to a state-space form with a minimum number of augmented aerodynamic terms. The examples treated in this work relate to NASA's Drone for Aerodynamic and Structural Testing-Aerodynamic Research Wing 1 (DAST-ARW1) and to the YF-17 fighter model. It is shown that in all cases considered, the method yields a very good accuracy regarding the flutter parameters and the dynamic behavior of the systems, using only two augmented aerodynamic states. The method should prove useful in the design of lower order control laws based on optimal control theory.