Nanotubes-/nanowires-based, microfluidic-integrated transistors for detecting biomolecules

Nanotubes and nanowires have sparked considerable interest in biosensing applications due to their exceptional charge transport properties and size compatibility with biomolecules. Among the various biosensing methodologies incorporating these nanostructured materials in their sensing platforms, liquid-gated field-effect transistors (LGFETs)-based device configurations outperform the conventional electrochemical measurements by their ability in providing label free, direct electronic read-out, and real-time detection. Together with integration of a microfluidic channel into the device architecture, nanotube- or nanowires-based LGFET biosensor have demonstrated promising potential toward the realization of truly field-deployable self-contained lab-on-chip devices, which aim to complement the existing lab-based methodologies. This review addresses the recent advances in microfluidic-integrated carbon nanotubes and inorganic nanowires-based LGFET biosensors inclusive of nanomaterials growth, device fabrication, sensing mechanisms, and interaction of biomolecules with nanotubes and nanowires. Design considerations, factors affecting sensing performance and sensitivity, amplification and multiplexing strategies are also detailed to provide a comprehensive understanding of present biosensors and future sensor systems development.

[1]  James E. Brady,et al.  Chemistry: Matter and Its Changes , 1975 .

[2]  M. Grell,et al.  A novel characterization scheme for organic field-effect transistors , 2007 .

[3]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[4]  J. Rogers,et al.  Electrical Detection of Femtomolar DNA via Gold‐Nanoparticle Enhancement in Carbon‐Nanotube‐Network Field‐Effect Transistors , 2008 .

[5]  J. Gardner,et al.  Application of an electronic nose to the discrimination of coffees , 1992 .

[6]  I. Rodríguez,et al.  Protein/carbon nanotubes interaction: The effect of carboxylic groups on conformational and conductance changes , 2009 .

[7]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[8]  Jean-Christophe P. Gabriel,et al.  Flexible Nanotube Electronics , 2003 .

[9]  M. Sansom,et al.  Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study , 2009, Nanotechnology.

[10]  Ferdinand Braun,et al.  Ueber die Stromleitung durch Schwefelmetalle , 1875 .

[11]  John A. Rogers,et al.  Laminated, microfluidic-integrated carbon nanotube based biosensors , 2009 .

[12]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[13]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[14]  John A Rogers,et al.  Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. , 2006, Journal of the American Chemical Society.

[15]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[16]  C. Grigoropoulos,et al.  Bioelectronic silicon nanowire devices using functional membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[17]  Xiaolin Zheng,et al.  Numerical characterization and optimization of the microfluidics for nanowire biosensors. , 2008, Nano letters.

[18]  Joseph D. Gong,et al.  Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. , 2006, Journal of the American Chemical Society.

[19]  Bhupendra Kumar,et al.  Integration of ink jet and transfer printing for device fabrication using nanostructured materials , 2009 .

[20]  Ananth Dodabalapur,et al.  Organic field effect transistor mobility from transient response analysis , 2006 .

[21]  Peng Chen,et al.  CMOS-Compatible nanowire sensor arrays for detection of cellular bioelectricity. , 2008, Small.

[22]  Ilya Sychugov,et al.  Surface charge sensitivity of silicon nanowires: size dependence. , 2007, Nano letters.

[23]  Tae-Wook Kim,et al.  Channel-length and gate-bias dependence of contact resistance and mobility for In2O3 nanowire field effect transistors , 2007 .

[24]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[25]  T. Lasser,et al.  Imaging of G protein-coupled receptors in solid-supported planar lipid membranes , 2008, Biointerphases.

[26]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[27]  Minbaek Lee,et al.  Nanowire and nanotube transistors for lab-on-a-chip applications. , 2009, Lab on a chip.

[28]  Kenneth A. Smith,et al.  Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates , 1999 .

[29]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[30]  O. P. Repnytska,et al.  DNA interaction with single-walled carbon nanotubes: a SEIRA study , 2003 .

[31]  Luisa Torsi,et al.  A sensitivity-enhanced field-effect chiral sensor. , 2008, Nature materials.

[32]  Oscillator circuit based on a single organic transistor , 2008 .

[33]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[34]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[35]  G. Grüner,et al.  Integration of cell membranes and nanotube transistors. , 2005, Nano letters.

[36]  M. Arnold,et al.  Enrichment of single-walled carbon nanotubes by diameter in density gradients. , 2005, Nano letters.

[37]  Joseph Wang,et al.  Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. , 2004, Journal of the American Chemical Society.

[38]  M. Prato,et al.  Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. , 2007, Small.

[39]  Haiqing Peng,et al.  Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. , 2003, Journal of the American Chemical Society.

[40]  S Kim,et al.  Predicting protein diffusion coefficients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Zhongfan Liu,et al.  Chemically assembled single-wall carbon nanotubes and their electrochemistry. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  J. Lyding,et al.  Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfaces , 2003 .

[43]  L. Nagahara,et al.  In situ detection of cytochrome c adsorption with single walled carbon nanotube device , 2003 .

[44]  David J. Mooney,et al.  Label-free biomarker detection from whole blood , 2009, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[45]  N Balasubramanian,et al.  Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. , 2008, Biosensors & bioelectronics.

[46]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[47]  John A Rogers,et al.  Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. , 2007, Nano letters.

[48]  Andreas Offenhäusser,et al.  Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices , 2005 .

[49]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[50]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[51]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[52]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[53]  Vinu Venkatraman,et al.  Fabrication of Submicron IrO2 Nanowire Array Biosensor Platform by Conventional Complementary Metal–Oxide–Semiconductor Process , 2008 .

[54]  I. Rodríguez,et al.  EFFECT OF ALIGNMENT ON THE TEMPERATURE–RESISTANCE RESPONSE OF DIELECTROPHORETICALLY ASSEMBLED MULTIWALLED CARBON NANOTUBE FILMS , 2008 .

[55]  C. Li,et al.  Selective functionalization of In2O3 nanowire mat devices for biosensing applications. , 2005, Journal of the American Chemical Society.

[56]  M. Prato,et al.  Carbon nanotubes as nanomedicines: from toxicology to pharmacology. , 2006, Advanced drug delivery reviews.

[57]  Robert J. Hamers,et al.  Covalent functionalization and biomolecular recognition properties of DNA-modified silicon nanowires , 2005 .

[58]  M. P. Anantram,et al.  Physics of carbon nanotube electronic devices , 2006 .

[59]  M. Lee,et al.  Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires , 2006, Nature nanotechnology.

[60]  Lei Su,et al.  Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[61]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[62]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  I. Rodríguez,et al.  Direct detection of heroin metabolites using a competitive immunoassay based on a carbon-nanotube liquid-gated field-effect transistor. , 2010, Small.

[64]  Ingo Köper,et al.  Tethered bimolecular lipid membranes - A novel model membrane platform , 2006 .

[65]  Sarah E. Baker,et al.  Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization , 2002 .

[66]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[67]  Lloyd M. Smith,et al.  Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces. , 2000, Nucleic acids research.

[68]  Nagarajan Vaidehi,et al.  Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. , 2004, Chemical senses.

[69]  Douglas B. Kell,et al.  Real-time vapour sensing using an OFET-based electronic nose and genetic programming , 2009 .

[70]  Seunghun Hong,et al.  Massive integration of inorganic nanowire-based structures on solid substrates for device applications , 2009 .

[71]  J. Ho,et al.  Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. , 2009, Biosensors & bioelectronics.

[72]  Steven A Curley,et al.  Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence , 2006, Proceedings of the National Academy of Sciences.

[73]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[74]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[75]  C. Sow,et al.  Aligned Tin Oxide Nanonets for High-Performance Transistors , 2010 .

[76]  Bing-Lin Gu,et al.  Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. , 2007, Nano letters.

[77]  L. Yahia,et al.  Biocompatibility and applications of carbon nanotubes in medical nanorobots , 2007, International journal of nanomedicine.

[78]  Deepak Sharma,et al.  Nanoscale organic and polymeric field-effect transistors as chemical sensors , 2005, Analytical and bioanalytical chemistry.

[79]  S. Rudikoff,et al.  Size differences among immunoglobulin heavy chains from phosphorylcholine-binding proteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[81]  Arben Merkoçi,et al.  Electrochemical Sensing of DNA Using Gold Nanoparticles , 2007 .

[82]  S. D. Collins,et al.  A physical model for drift in pH ISFETs , 1998 .

[83]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  R. Naaman,et al.  Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes , 2003 .

[85]  J. Ha,et al.  Thickness and density controllable pattern transfer of DODAB/V2O5 nanowire hybrid film , 2007 .

[86]  M. Terrones,et al.  Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation , 2004 .

[87]  B. Liedberg,et al.  Aligned carbon nanotubes on quartz substrate for liquid gated biosensing. , 2010, Biosensors & bioelectronics.

[88]  C. Hague,et al.  Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance , 2005, Pharmacological Reviews.

[89]  M. T. Martínez,et al.  Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. , 2009, Nano letters.

[90]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[91]  Mohammad Asif Hussain,et al.  On the cytotoxicity of carbon nanotubes , 2009 .

[92]  Raoul Schroeder,et al.  One Volt Organic Transistor , 2005 .

[93]  D. Kahng,et al.  Silicon-Silicon Dioxide Surface Device , 1991 .

[94]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[95]  Wolfgang Knoll,et al.  Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes , 2003 .

[96]  Guang Li,et al.  A pattern recognition method for electronic noses based on an olfactory neural network , 2007 .

[97]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[98]  P. McEuen,et al.  Probing electrostatic potentials in solution with carbon nanotube transistors. , 2006, Nano letters.

[99]  J. Israelachvili Intermolecular and surface forces , 1985 .

[100]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[101]  George Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[102]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[103]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[104]  Jeng-Hua Wei,et al.  Semiconducting single-walled carbon nanotubes exposed to distilled water and aqueous solution: Electrical measurement and theoretical calculation , 2006 .

[105]  Yiming Li,et al.  Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes , 2002 .

[106]  A. Noy,et al.  Functional one-dimensional lipid bilayers on carbon nanotube templates. , 2005, Journal of the American Chemical Society.

[107]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[108]  Mark S. Lundstrom,et al.  Electrostatics of nanowire transistors , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[109]  James Hone,et al.  Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. , 2006, The journal of physical chemistry. B.

[110]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[111]  Dusan Losic,et al.  Protein electrochemistry using aligned carbon nanotube arrays. , 2003, Journal of the American Chemical Society.

[112]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[113]  John A Rogers,et al.  In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. , 2006, Angewandte Chemie.

[114]  John A. Rogers,et al.  Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films , 2004 .

[115]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[116]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[117]  D. Vuillaume,et al.  Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics , 2008 .

[118]  Kenzo Maehashi,et al.  Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors , 2004 .

[119]  Jeng-Tzong Sheu,et al.  Detection of an uncharged steroid with a silicon nanowire field-effect transistor , 2009 .

[120]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[121]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[122]  P. Schultz,et al.  Carbon nanotubes as templates for polymerized lipid assemblies. , 2008, Nature nanotechnology.

[123]  M.A. Alam,et al.  Design Considerations of Silicon Nanowire Biosensors , 2007, IEEE Transactions on Electron Devices.

[124]  P. Parilla,et al.  A Simple and Complete Purification of Single‐Walled Carbon Nanotube Materials , 1999 .

[125]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[126]  Charles M Lieber,et al.  Flexible electrical recording from cells using nanowire transistor arrays , 2009, Proceedings of the National Academy of Sciences.

[127]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[128]  Chien-Yuan Pan,et al.  In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor. , 2007, Small.

[129]  Chan Woo Park,et al.  Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors , 2007 .

[130]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[131]  Luisa Torsi Organic thin-film transistors as analytical and bioanalytical sensors , 2006, Analytical and bioanalytical chemistry.

[132]  John A. Rogers,et al.  Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors , 2006 .

[133]  M. Chan-Park,et al.  Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method , 2006, Nanotechnology.

[134]  Andreas Offenhäusser,et al.  Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. , 2005, Biophysical journal.

[135]  D. Zack,et al.  Monoclonal antibodies reveal the structural basis of antibody diversity. , 1983, Science.

[136]  Sang Jun Sim,et al.  Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. , 2008, Analytical biochemistry.

[137]  Yeoheung Yun,et al.  Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel , 2007, Nanotechnology.

[138]  Sonu Gandhi,et al.  Femtomolar detection of 2,4-dichlorophenoxyacetic acid herbicides via competitive immunoassays using microfluidic based carbon nanotube liquid gated transistor. , 2010, Lab on a chip.

[139]  Kazuhiko Matsumoto,et al.  Protein Sensor Using Carbon Nanotube Field Effect Transistor , 2005 .

[140]  Heon-Jin Choi,et al.  Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. , 2008, Nano letters.

[141]  K. Kolasinski Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth , 2006 .

[142]  Chun Yang,et al.  DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. , 2009, Lab on a chip.

[143]  Linda B Buck,et al.  Unraveling the sense of smell (Nobel lecture). , 2005, Angewandte Chemie.

[144]  D. Oesterhelt,et al.  Incorporation of in vitro synthesized GPCR into a tethered artificial lipid membrane system. , 2007, Angewandte Chemie.

[145]  Julio Raba,et al.  Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. , 2008, Biosensors & bioelectronics.

[146]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[147]  Cees Dekker,et al.  Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. , 2009, Nano letters.

[148]  Charles M. Lieber,et al.  Electrical recording from hearts with flexible nanowire device arrays. , 2009, Nano letters.

[149]  Ingo Köper,et al.  Insulating tethered bilayer lipid membranes to study membrane proteins. , 2007, Molecular bioSystems.

[150]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[151]  D. DeVoe,et al.  Polyacrylamide gel plugs enabling 2‐D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis , 2008, Electrophoresis.

[152]  H. Dai,et al.  Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes , 2001 .

[153]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[154]  Richard G Compton,et al.  Microelectrode arrays for electrochemistry: approaches to fabrication. , 2009, Small.

[155]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[156]  Gang Zhang,et al.  A universal expression of band gap for silicon nanowires of different cross-section geometries. , 2008, Nano letters.

[157]  I. Rodríguez,et al.  Investigation of sensing mechanism and signal amplification in carbon nanotube based microfluidic liquid-gated transistors via pulsating gate bias. , 2010, Lab on a chip.

[158]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[159]  J. Misewich,et al.  Functionalized carbon nanotubes for detecting viral proteins. , 2007, Nano letters.

[160]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[161]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[162]  Cees Dekker,et al.  Carbon nanotube biosensors: The critical role of the reference electrode , 2007 .

[163]  Pooi See Lee,et al.  DNA sensing by field-effect transistors based on networks of carbon nanotubes. , 2007, Journal of the American Chemical Society.

[164]  P. McEuen,et al.  Supported lipid bilayer/carbon nanotube hybrids. , 2007, Nature nanotechnology.

[165]  Yee Cheong Lam,et al.  Experimental verification of Faradaic charging in ac electrokinetics. , 2009, Biomicrofluidics.

[166]  H. Haick,et al.  Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. , 2006, Journal of the American Chemical Society.

[167]  Biosensor with Oxide Nanowires , 2006, 2006 5th IEEE Conference on Sensors.

[168]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J. Ha,et al.  Control of adsorption and alignment of V2O5 nanowires via chemically functionalized patterns , 2007 .

[170]  P. Poulin,et al.  Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. , 2006, Journal of nanoscience and nanotechnology.

[171]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[172]  Michael L. Turner,et al.  A Nitrogen Dioxide Sensor Based on an Organic Transistor Constructed from Amorphous Semiconducting Polymers , 2007 .

[173]  Rui Zhang,et al.  Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs , 2008, IEEE Transactions on Nanotechnology.

[174]  G. Grüner,et al.  Charge Transfer from Adsorbed Proteins , 2004 .

[175]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[176]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[177]  Weihong Zhu,et al.  Langmuir–Blodgett Films of Single-Wall Carbon Nanotubes: Layer-by-layer Deposition and In-plane Orientation of Tubes , 2003 .

[178]  Po-Jen Hsieh,et al.  Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor , 2009, Proceedings of the National Academy of Sciences.

[179]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[180]  Liangbing Hu,et al.  A method of printing carbon nanotube thin films , 2006 .

[181]  Maurizio Prato,et al.  CELL-PENETRATING CNTS FOR DELIVERY OF THERAPEUTICS , 2007 .

[182]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.