A high bandwidth interface for haptic human computer interaction

Abstract Current force feedback, haptic interface devices are generally limited to the display of low frequency, high amplitude spatial data. A typical device consists of a low impedance framework of one or more degrees-of-freedom (dof), allowing a user to explore a pre-defined workspace via an end effector such as a handle, thimble, probe or stylus. The movement of the device is then constrained using high gain positional feedback, thus reducing the apparent dof of the device and conveying the illusion of hard contact to the user. Such devices are, however, limited to a narrow bandwidth of frequencies, typically below 30 Hz, and are not well suited to the display of surface properties, such as object texture. This paper details a device to augment an existing force feedback haptic display with a vibrotactile display, thus providing a means of conveying low amplitude, high frequency spatial information of object surface properties.

[1]  Thomas Harold Massie,et al.  Initial haptic explorations with the phantom : virtual touch through point interaction , 1996 .

[2]  G. D. Goff Differential discrimination of frequency of cutaneous mechanical vibration. , 1967, Journal of experimental psychology.

[3]  S. Wall,et al.  Modelling of Surface Identifying Characteristics Using Fourier Series , 1999, Dynamic Systems and Control.

[4]  R. Johansson,et al.  Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand , 1984, Brain Research.

[5]  G. Lamb Tactile discrimination of textured surfaces: psychophysical performance measurements in humans. , 1983, The Journal of physiology.

[6]  T. L. Brooks,et al.  Telerobotic response requirements , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[7]  L. E. Krueger David Katz’s Der Aufbau der Tastwelt (The world of touch): A synopsis , 1970 .

[8]  S. Lederman,et al.  The role of vibration in the tactual perception of roughness , 1982, Perception & psychophysics.

[9]  M. M. Taylor,et al.  Fingertip force, surface geometry, and the perception of roughness by active touch , 1972 .

[10]  R. Klatzky,et al.  Haptic identification of objects and their depictions , 1993, Perception & psychophysics.

[11]  J. Marshall THE SKIN SENSES , 1969 .

[12]  F. A. Geldard The Human Senses , 1972 .

[13]  R. Klatzky,et al.  Identifying objects from a haptic glance , 1995, Perception & psychophysics.

[14]  W.J. Tompkins,et al.  Electrotactile and vibrotactile displays for sensory substitution systems , 1991, IEEE Transactions on Biomedical Engineering.

[15]  S. S. Stevens,et al.  The scaling of subjective roughness and smoothness. , 1962, Journal of experimental psychology.

[16]  G. Ekman,et al.  ROUGHNESS, SMOOTHNESS, AND PREFERENCE: A STUDY OF QUANTITATIVE RELATIONS IN INDIVIDUAL SUBJECTS. , 1965, Journal of experimental psychology.

[17]  Robert D. Howe,et al.  Display of high-frequency tactile information to teleoperators , 1993, Other Conferences.

[18]  R. Johansson,et al.  Detection of tactile stimuli. Thresholds of afferent units related to psychophysical thresholds in the human hand. , 1979, The Journal of physiology.

[19]  H. Bauer Discrimination of tactual stimuli. , 1952, Journal of experimental psychology.

[20]  C. H. Rogers Choice of Stimulator Frequency for Tactile Arrays , 1970 .

[21]  R. Johansson,et al.  Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements , 1982, Brain Research.

[22]  James C. Bliss,et al.  Optical-to-Tactile Image Conversion for the Blind , 1970 .

[23]  M. Knibestöl Stimulus—response functions of rapidly adapting mechanoreceptors in the human glabrous skin area , 1973, The Journal of physiology.