Spectral Graph Matching and Regularized Quadratic Relaxations: Algorithm and Theory

Graph matching, also known as network alignment, aims at recovering the latent vertex correspondence between two unlabeled, edgecorrelated weighted graphs. To tackle this task, we propose a spectral method, GRAph Matching by Pairwise eigen-Alignments (GRAMPA), which first constructs a similarity matrix as a weighted sum of outer products between all pairs of eigenvectors of the two graphs, and then outputs a matching by a simple rounding procedure. For a universality class of correlated Wigner models, GRAMPA achieves exact recovery of the latent matching between two graphs with edge correlation 1− 1/polylog(n) and average degree at least polylog(n). This matches the state-of-theart guarantees for polynomial-time algorithms established for correlated Erdős-Rényi graphs, and significantly improves over existing spectral methods. The superiority of GRAMPA is also demonstrated on a variety of synthetic and real datasets, in terms of both statistical accuracy and computational efficiency.

[1]  Panos M. Pardalos,et al.  The Quadratic Assignment Problem: A Survey and Recent Developments , 1993, Quadratic Assignment and Related Problems.

[2]  M. Bronstein,et al.  SHREC’16: Matching of Deformable Shapes with Topological Noise , 2016 .

[3]  H. Yau,et al.  The Eigenvector Moment Flow and Local Quantum Unique Ergodicity , 2013, 1312.1301.

[4]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Maxim Sviridenko,et al.  Maximum Quadratic Assignment Problem: Reduction from Maximum Label Cover and LP-Based Approximation Algorithm , 2010, ICALP.

[6]  Lei Xu,et al.  A PCA approach for fast retrieval of structural patterns in attributed graphs , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Matthias Grossglauser,et al.  On the performance of percolation graph matching , 2013, COSN '13.

[8]  Yaron Lipman,et al.  DS++ , 2017, ACM Trans. Graph..

[9]  Carey E. Priebe,et al.  Seeded graph matching for correlated Erdös-Rényi graphs , 2014, J. Mach. Learn. Res..

[10]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[11]  Lorenzo Livi,et al.  The graph matching problem , 2012, Pattern Analysis and Applications.

[12]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[13]  Matthias Grossglauser,et al.  Growing a Graph Matching from a Handful of Seeds , 2015, Proc. VLDB Endow..

[14]  Matthias Grossglauser,et al.  On the Structure and Efficient Computation of IsoRank Node Similarities , 2016, ArXiv.

[15]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[16]  Gopal Pandurangan,et al.  Improved Random Graph Isomorphism Tomek Czajka , 2006 .

[17]  R. Burkard Quadratic Assignment Problems , 1984 .

[18]  R. Srikant,et al.  Correcting the Output of Approximate Graph Matching Algorithms , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[19]  Tselil Schramm,et al.  (Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated Random Graphs , 2018, NeurIPS.

[20]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[21]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[22]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[23]  Daniel Cullina,et al.  Exact alignment recovery for correlated Erdos Renyi graphs , 2017, ArXiv.

[24]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[25]  Jiaming Xu,et al.  Efficient random graph matching via degree profiles , 2018, Probability Theory and Related Fields.

[26]  Muriel Medard,et al.  Spectral Alignment of Graphs , 2016, IEEE Transactions on Network Science and Engineering.

[27]  M. Zaslavskiy,et al.  A Path Following Algorithm for the Graph Matching Problem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  L. Benigni Eigenvectors distribution and quantum unique ergodicity for deformed Wigner matrices , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[29]  Salih O. Duffuaa,et al.  A Linear Programming Approach for the Weighted Graph Matching Problem , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[31]  Elchanan Mossel,et al.  Seeded graph matching via large neighborhood statistics , 2018, SODA.

[32]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[33]  Daniel Cullina,et al.  Improved Achievability and Converse Bounds for Erdos-Renyi Graph Matching , 2016, SIGMETRICS.

[34]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[35]  Christoph Schnörr,et al.  Probabilistic Subgraph Matching Based on Convex Relaxation , 2005, EMMCVPR.

[36]  Y. Aflalo,et al.  On convex relaxation of graph isomorphism , 2015, Proceedings of the National Academy of Sciences.

[37]  Yücel Yemez,et al.  Minimum-Distortion Isometric Shape Correspondence Using EM Algorithm , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Silvio Lattanzi,et al.  An efficient reconciliation algorithm for social networks , 2013, Proc. VLDB Endow..

[39]  Matthias Grossglauser,et al.  On the privacy of anonymized networks , 2011, KDD.

[40]  Daniel Cullina,et al.  On the Performance of a Canonical Labeling for Matching Correlated Erdős-Rényi Graphs , 2018, ArXiv.

[41]  Vitaly Shmatikov,et al.  De-anonymizing Social Networks , 2009, 2009 30th IEEE Symposium on Security and Privacy.

[42]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Matthias Grossglauser,et al.  PROPER: global protein interaction network alignment through percolation matching , 2016, BMC Bioinformatics.

[45]  Elza Erkip,et al.  Seeded graph matching: Efficient algorithms and theoretical guarantees , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[46]  Prateek Mittal,et al.  Partial Recovery of Erdős-Rényi Graph Alignment via k-Core Alignment , 2020, Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems.

[47]  Carey E. Priebe,et al.  Fast Approximate Quadratic Programming for Graph Matching , 2015, PloS one.

[48]  Laurent Massoulié,et al.  Spectral alignment of correlated Gaussian random matrices , 2019, ArXiv.

[49]  H. Yau,et al.  The local semicircle law for a general class of random matrices , 2012, 1212.0164.

[50]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[51]  Guillermo Sapiro,et al.  Graph Matching: Relax at Your Own Risk , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[53]  David M. Mount,et al.  Isomorphism of graphs with bounded eigenvalue multiplicity , 1982, STOC '82.

[54]  B. Bollobás Distinguishing Vertices of Random Graphs , 1982 .

[55]  Maxim Sviridenko,et al.  Maximum Quadratic Assignment Problem: Reduction from Maximum Label Cover and LP-based Approximation Algorithm , 2010, TALG.