Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques

We present exact mixed integer programming approaches including branch-and-cut and branch-and-cut-and-price for the minimum label spanning tree problem as well as a variant of it having multiple labels assigned to each edge. We compare formulations based on network flows and directed connectivity cuts. Further, we show how to use odd-hole inequalities and additional inequalities to strengthen the formulation. Label variables can be added dynamically to the model in the pricing step. Primal heuristics are incorporated into the framework to speed up the overall solution process. After a polyhedral comparison of the involved formulations, comprehensive computational experiments are presented in order to compare and evaluate the underlying formulations and the particular algorithmic building blocks of the overall branch-and-cut- (and-price) framework.

[1]  Günther R. Raidl,et al.  Solving a k-Node Minimum Label Spanning Arborescence Problem to Compress Fingerprint Templates , 2009, J. Math. Model. Algorithms.

[2]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[3]  L. Wolsey,et al.  Chapter 9 Optimal trees , 1995 .

[4]  Stefan Voß,et al.  Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem , 2005 .

[5]  Markus Chimani,et al.  Obtaining Optimal k-Cardinality Trees Fast , 2008, ALENEX.

[6]  Günther R. Raidl,et al.  Compressing Fingerprint Templates by Solving an Extended Minimum Label Spanning Tree Problem , 2007 .

[7]  Inbal Yahav,et al.  Comparison of Heuristics for Solving the Gmlst Problem , 2008 .

[8]  Nenad Mladenovic,et al.  Variable neighbourhood search for the minimum labelling Steiner tree problem , 2009, Ann. Oper. Res..

[9]  Bruce L. Golden,et al.  A one-parameter genetic algorithm for the minimum labeling spanning tree problem , 2005, IEEE Transactions on Evolutionary Computation.

[10]  M. Grötschel,et al.  Solving matching problems with linear programming , 1985, Math. Program..

[11]  Nenad Mladenović,et al.  Heuristics based on greedy randomized adaptive search and variable neighbourhood search for the minimum labelling spanning tree problem , 2007 .

[12]  Bryant A. Julstrom,et al.  An effective genetic algorithm for the minimum-label spanning tree problem , 2006, GECCO '06.

[13]  João C. N. Clímaco,et al.  A mixed integer linear formulation for the minimum label spanning tree problem , 2009, Comput. Oper. Res..

[14]  Ruay-Shiung Chang,et al.  The Minimum Labeling Spanning Trees , 1997, Inf. Process. Lett..

[15]  Gérard Cornuéjols,et al.  On the 0, 1 facets of the set covering polytope , 1989, Math. Program..

[16]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[17]  Sven Oliver Krumke,et al.  On the Minimum Label Spanning Tree Problem , 1998, Inf. Process. Lett..

[18]  Sergio Consoli,et al.  Solving the minimum labelling spanning tree problem using hybrid local search , 2012, Electron. Notes Discret. Math..

[19]  Nenad Mladenovic,et al.  Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem , 2009, Eur. J. Oper. Res..

[20]  Bruce L. Golden,et al.  Improved Heuristics for the Minimum Label Spanning Tree Problem , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Peter Eades,et al.  On Optimal Trees , 1981, J. Algorithms.

[22]  Andrew V. Goldberg,et al.  On Implementing the Push—Relabel Method for the Maximum Flow Problem , 1997, Algorithmica.

[23]  C. Sch.,et al.  Konrad-Zuse-Zentrum für Informationstechnik Berlin , 2007 .

[24]  Guoliang Chen,et al.  A note on the minimum label spanning tree , 2002, Inf. Process. Lett..

[25]  Nenad Mladenović,et al.  Constructive Heuristics for the Minimum Labelling Spanning Tree Problem: a preliminary comparison , 2006 .

[26]  Gerhard J. Woeginger,et al.  Local search for the minimum label spanning tree problem with bounded color classes , 2003, Oper. Res. Lett..