Review on Land Use Classification

Land use classification covers a wide range of applications from general land cover determination to specific crop type detection. Many approaches have been developed to infer land usage from satellite and aerial images. Our multispectral satellite image understanding system starts with land use classification. Therefore, it is reasonable to analyze the existing literature on this problem first. To do so, we investigate trends in land use classification between years 1967 and 2002 by reviewing the related literature. We consider the seminal work of Fu et al. 1969 to be the beginning of automated land use classification. We did not attempt to cover the whole literature; however, we tried to explore a significant and influential portion of it. Specifically, we focused on feature extraction methods using passive sensors and excluded work on classifiers, neural networks, and fuzzy logic. To investigate the trends in solving this problem, we reviewed over 90 influential papers published in refereed journals. To identify trends, we grouped papers based on their major contribution. We grouped these papers according to their major contribution. One paper could belong to many groups, but we chose to assign each paper to only one “best” group. We summarize key papers in each group and tabulate each study by the type of image used, geographical location considered, and the average performance obtained. To clarify image types used in the literature, we include a section summarizing remote sensing satellites and airborne equipment.

[1]  Paul J. Curran,et al.  Per-field classification: an example using SPOT HRV imagery , 1991 .

[2]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[3]  N. Khazenie,et al.  Spatial-temporal Autocorrelated Model For Contextual Classification , 1990 .

[4]  Gérard Giraudon,et al.  Toward robust analysis of satellite images using map information-application to urban area detection , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  I. L. Thomas Spartially postprocessing of spectrally classified Landsat data. , 1980 .

[6]  Fangju Wang,et al.  A knowledge-based vision system for detecting land changes at urban fringes , 1993, IEEE Trans. Geosci. Remote. Sens..

[7]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Jams L. Cushnie The interactive effect of spatial resolution and degree of internal variability within land-cover types on classification accuracies , 1987 .

[9]  I. Jolliffe Principal Component Analysis , 2002 .

[10]  Haim J. Wolfson,et al.  Texture classification in aerial photographs and satellite data , 1992 .

[11]  José A. Martínez-Casasnovas,et al.  A cartographic and database approach for land cover/use mapping and generalization from remotely sensed data , 2000 .

[12]  Robert M. Haralick,et al.  Multispectral image context classification using stochastic relaxation , 1990, IEEE Trans. Syst. Man Cybern..

[13]  William Philpot,et al.  A derivative-aided hyperspectral image analysis system for land-cover classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[14]  Chein-I Chang,et al.  Target signature-constrained mixed pixel classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  Brian M. Steele,et al.  Combining Multiple Classifiers: An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping , 2000 .

[16]  Robert De Wulf,et al.  Land cover mapping at sub-pixel scales using linear optimization techniques , 2002 .

[17]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[18]  Mohan M. Trivedi,et al.  Segmentation of a high-resolution urban scene using texture operators , 1984, Comput. Vis. Graph. Image Process..

[19]  David A. Landgrebe,et al.  The development of a spectral-spatial classifier for earth observational data , 1980, Pattern Recognit..

[20]  Chein-I Chang,et al.  A Kalman filtering approach to multispectral image classification and detection of changes in signature abundance , 1999, IEEE Trans. Geosci. Remote. Sens..

[21]  R. Kettig,et al.  Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects , 1976, IEEE Transactions on Geoscience Electronics.

[22]  R. A. Vaughan,et al.  Multifractal analysis and feature extraction in satellite imagery , 2002 .

[23]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[24]  Luis O. Jimenez,et al.  Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks , 1999, IEEE Trans. Geosci. Remote. Sens..

[25]  Agustin Lobo,et al.  Image segmentation and discriminant analysis for the identification of land cover units in ecology , 1997, IEEE Trans. Geosci. Remote. Sens..

[26]  David A. Landgrebe,et al.  Decision fusion approach for multitemporal classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  F. Parmiggiani,et al.  Urban Area Classification By Multispectral SPOT Images , 1990 .

[28]  Paul C. Smits,et al.  Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection , 2002, IEEE Trans. Geosci. Remote. Sens..

[29]  G. Okouneva,et al.  A new histogram quantization algorithm for land cover mapping , 2001 .

[30]  D. Lloyd,et al.  A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery , 1990 .

[31]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[32]  Stephen Wharton,et al.  A Spectral-Knowledge-Based Approach for Urban Land-Cover Discrmination , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Mark L. G. Althouse,et al.  Least squares subspace projection approach to mixed pixel classification for hyperspectral images , 1998, IEEE Trans. Geosci. Remote. Sens..

[34]  Peter Jackson,et al.  Introduction to expert systems , 1986 .

[35]  Chein-I Chang,et al.  Unsupervised hyperspectral image analysis with projection pursuit , 2000, IEEE Trans. Geosci. Remote. Sens..

[36]  Y. Kawata,et al.  Classification Of The SPOT Image Using Spectral And Spatial Features Of Primitive Regions That Have Nearly Uniform Color , 1990 .

[37]  King-Sun Fu,et al.  Statistical pattern classification using contextual information , 1980 .

[38]  Yoram Bresler,et al.  Theoretical analysis of multispectral image segmentation criteria , 1999, IEEE Trans. Image Process..

[39]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[40]  Chein-I Chang,et al.  An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[41]  David A. Landgrebe,et al.  A means for utilizing ancillary information in multispectral classification. [of remotely sensed data , 1982 .

[42]  Siamak Khorram,et al.  Comparson of Landsat MSS and TM Data for Urban Land-Use Classification , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[43]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[44]  O. Dikshit,et al.  Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh , 2001 .

[45]  James R. Irons,et al.  Texture transforms of remote sensing data , 1981 .

[46]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[47]  M. Ramsey,et al.  Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers , 2001 .

[48]  Sanghamitra Bandyopadhyay,et al.  Pixel classification using variable string genetic algorithms with chromosome differentiation , 2001, IEEE Trans. Geosci. Remote. Sens..

[49]  B. Gorte,et al.  Probabilistic image classification using geological map units applied to land-cover change detection , 2000 .

[50]  J. Gastellu-Etchegorry An assessment of SPOT XS and Landsat MSS data for digital classification of near-urban land cover , 1990 .

[51]  R. Haralick,et al.  Computer Classification of Reservoir Sandstones , 1973 .

[52]  Chein-I Chang,et al.  A generalized orthogonal subspace projection approach to unsupervised multispectral image classification , 2000, IEEE Trans. Geosci. Remote. Sens..

[53]  Paul M. Mather,et al.  Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..

[54]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[55]  K. M. S. Sharma,et al.  A modified contextual classification technique for remote sensing data , 1998 .

[56]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[57]  L. Moeller-Jensen,et al.  Knowledge-based classification of an urban area using texture and context information in Landsat-TM imagery , 1990 .

[58]  Corina da Costa Freitas,et al.  The study of ERS-1 SAR and Landsat TM synergism for land use classification , 2000 .

[59]  C. Small Estimation of urban vegetation abundance by spectral mixture analysis , 2001 .

[60]  L. Møller-Jensen Classification of urban land cover based on expert systems, object models and texture , 1997 .

[61]  B. Kartikeyan,et al.  A segmentation approach to classification of remote sensing imagery , 1998 .

[62]  E. Oja,et al.  Independent Component Analysis , 2013 .

[63]  Philip J. Howarth,et al.  Land-use classification of SPOT HRV data using a cover-frequency method , 1992 .

[64]  King-Sun Fu,et al.  Information processing of remotely sensed agricultural data , 1969 .

[65]  P. Gong,et al.  Frequency-based contextual classification and gray-level vector reduction for land-use identification , 1992 .

[66]  Stephen W. Wharton,et al.  A contextual classification method for recognizing land use patterns in high resolution remotely sensed data , 1982, Pattern Recognit..

[67]  David A. Landgrebe,et al.  Classification of remote sensing images having high spectral resolution , 1996 .

[68]  Johannes R. Sveinsson,et al.  Hybrid consensus theoretic classification , 1997, IEEE Trans. Geosci. Remote. Sens..

[69]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[70]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Jong-Hun Lee,et al.  Spectral texture pattern matching: a classifier for digital imagery , 1991, IEEE Trans. Geosci. Remote. Sens..

[73]  John A. Richards,et al.  Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[74]  Kim L. Boyer,et al.  Computer Perceptual Organization in Computer Vision , 1994, Series in Machine Perception and Artificial Intelligence.

[75]  Jon Atli Benediktsson,et al.  Classification of multisource and hyperspectral data based on decision fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[76]  Stephen B. Vardeman,et al.  Estimation of Context for Statistical Classification of Multispectral Image Data , 1982, IEEE Transactions on Geoscience and Remote Sensing.

[77]  Paul C. Smits,et al.  Updating land-cover maps by using texture information from very high-resolution space-borne imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[78]  Vikash Kumar,et al.  A MRF model-based segmentation approach to classification for multispectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[79]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.

[80]  D.A. Landgrebe,et al.  Classification with spatio-temporal interpixel class dependency contexts , 1992, IEEE Trans. Geosci. Remote. Sens..

[81]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[82]  Hermann Kaufmann,et al.  Automated differentiation of urban surfaces based on airborne hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[83]  Kim L. Boyer,et al.  Classifying land development in high-resolution panchromatic satellite images using straight-line statistics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[84]  S. Barr,et al.  INFERRING URBAN LAND USE FROM SATELLITE SENSOR IMAGES USING KERNEL-BASED SPATIAL RECLASSIFICATION , 1996 .

[85]  F. Parmiggiani,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[86]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[87]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[88]  Kyungsook Kim,et al.  Adaptive parametric estimation and classification of remotely sensed imagery using a pyramid structure , 1991, IEEE Trans. Geosci. Remote. Sens..

[89]  Stuart Barr,et al.  Reducing structural clutter in land cover classifications of high spatial resolution remotely-sensed images for urban land use mapping , 2000 .

[90]  Kantilal L. Majumder,et al.  An expert system for land cover classification , 1995, IEEE Trans. Geosci. Remote. Sens..

[91]  F. G. Alonso,et al.  Using contextual information to improve land use classification of satellite images in central Spain , 1991 .

[92]  Tatsuya Yamazaki,et al.  Unsupervised multispectral image classification using MRF models and VQ method , 1999, IEEE Trans. Geosci. Remote. Sens..

[93]  V. Karathanassi,et al.  A texture-based classification method for classifying built areas according to their density , 2000 .

[94]  Philip H. Swain,et al.  Bayesian contextual classification based on modified M-estimates and Markov random fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[95]  Sebastiano B. Serpico,et al.  Multisource data classification with dependence trees , 2002, IEEE Trans. Geosci. Remote. Sens..

[96]  S. Bruin Predicting the areal extent of land-cover types using classified imagery and geostatistics. , 2000 .