Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator
暂无分享,去创建一个
[1] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[2] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[3] J. Hopcroft,et al. Modeling, mesh generation, and adaptive numerical methods for partial differential equations , 1995 .
[4] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[5] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[6] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[7] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[8] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[9] Manuel D. Salas,et al. Barriers and Challenges in Computational Fluid Dynamics , 1998 .
[10] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[11] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[12] Ningning Yan,et al. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .
[13] Simona Perotto,et al. Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..
[14] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[15] Gene H. Golub,et al. Matrix computations , 1983 .
[16] Simona Perotto,et al. An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .
[17] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[18] Serge Nicaise,et al. ZIENKIEWICZ{ZHU ERROR ESTIMATORS ON ANISOTROPIC TETRAHEDRAL AND TRIANGULAR FINITE ELEMENT MESHES , 2003 .
[19] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[20] Gerd Kunert,et al. A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .
[21] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[22] Simona Perotto,et al. Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.
[23] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[24] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[25] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[26] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[27] Pekka Neittaanmäki,et al. On a global superconvergence of the gradient of linear triangular elements , 1987 .
[28] Ivo Marek,et al. Superconvergence results on mildly structured triangulations , 2000 .
[29] O. Zienkiewicz,et al. The finite element method in structural and continuum mechanics, numerical solution of problems in structural and continuum mechanics , 1967 .
[30] R. B. Simpson. Anisotropic mesh transformations and optimal error control , 1994 .
[31] Ricardo G. Durán,et al. On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .
[32] Pekka Neittaanmäki,et al. Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .
[33] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[34] Michel Fortin,et al. Anisotropic Mesh Adaptation: A Step Towards a Mesh-Independent and User-Independent CFD , 1998 .
[35] Zhimin Zhang,et al. Superconvergence of the Derivative Patch Recovery Technique and A Posteriori Error Estimation , 1995 .
[36] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[37] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[38] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[39] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[40] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[41] Simona Perotto,et al. An anisotropic recovery-based a posteriori error estimator , 2003 .
[42] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[43] M. Picasso. Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .
[44] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .