Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator

Abstract In this paper we study the efficiency and the reliability of an anisotropic a posteriori error estimator in the case of the Poisson problem supplied with mixed boundary conditions. The error estimator may be classified as a residual-based one, but its novelty is twofold: firstly, it employs anisotropic estimates of the interpolation error for linear triangular finite elements and, secondly, it makes use of the Zienkiewicz–Zhu recovery procedure to approximate the gradient of the exact solution. Finally, we describe the adaptive procedure used to obtain a numerical solution satisfying a given accuracy, and we include some numerical test cases to assess the robustness of the proposed numerical algorithm.

[1]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[2]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[3]  J. Hopcroft,et al.  Modeling, mesh generation, and adaptive numerical methods for partial differential equations , 1995 .

[4]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[5]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[6]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[7]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[8]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[9]  Manuel D. Salas,et al.  Barriers and Challenges in Computational Fluid Dynamics , 1998 .

[10]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[11]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[12]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[13]  Simona Perotto,et al.  Stabilized Finite Elements on Anisotropic Meshes: A Priori Error Estimates for the Advection-Diffusion and the Stokes Problems , 2003, SIAM J. Numer. Anal..

[14]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  Simona Perotto,et al.  An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .

[17]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[18]  Serge Nicaise,et al.  ZIENKIEWICZ{ZHU ERROR ESTIMATORS ON ANISOTROPIC TETRAHEDRAL AND TRIANGULAR FINITE ELEMENT MESHES , 2003 .

[19]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[20]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[21]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[22]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[23]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[24]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[25]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[26]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[27]  Pekka Neittaanmäki,et al.  On a global superconvergence of the gradient of linear triangular elements , 1987 .

[28]  Ivo Marek,et al.  Superconvergence results on mildly structured triangulations , 2000 .

[29]  O. Zienkiewicz,et al.  The finite element method in structural and continuum mechanics, numerical solution of problems in structural and continuum mechanics , 1967 .

[30]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[31]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[32]  Pekka Neittaanmäki,et al.  Superconvergence phenomenon in the finite element method arising from averaging gradients , 1984 .

[33]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[34]  Michel Fortin,et al.  Anisotropic Mesh Adaptation: A Step Towards a Mesh-Independent and User-Independent CFD , 1998 .

[35]  Zhimin Zhang,et al.  Superconvergence of the Derivative Patch Recovery Technique and A Posteriori Error Estimation , 1995 .

[36]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[37]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[38]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[39]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[40]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[41]  Simona Perotto,et al.  An anisotropic recovery-based a posteriori error estimator , 2003 .

[42]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[43]  M. Picasso Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator , 2002 .

[44]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .