TENSOR GENERALIZED ESTIMATING EQUATIONS FOR LONGITUDINAL IMAGING ANALYSIS.

Longitudinal neuroimaging studies are becoming increasingly prevalent, where brain images are collected on multiple subjects at multiple time points. Analyses of such data are scientifically important, but also challenging. Brain images are in the form of multidimensional arrays, or tensors, which are characterized by both ultrahigh dimensionality and a complex structure. Longitudinally repeated images and induced temporal correlations add a further layer of complexity. Despite some recent efforts, there exist very few solutions for longitudinal imaging analyses. In response to the increasing need to analyze longitudinal imaging data, we propose several tensor generalized estimating equations (GEEs). The proposed GEE approach accounts for intra-subject correlation, and an imposed low-rank structure on the coefficient tensor effectively reduces the dimensionality. We also propose a scalable estimation algorithm, establish the asymptotic properties of the solution to the tensor GEEs, and investigate sparsity regularization for the purpose of region selection. We demonstrate the proposed method using simulations and by analyzing a real data set from the Alzheimer's Disease Neuroimaging Initiative.

[1]  Hao Helen Zhang,et al.  Variable Selection for Semiparametric Mixed Models in Longitudinal Studies , 2010, Biometrics.

[2]  A. McKinney,et al.  Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease , 2010 .

[3]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[4]  Daoqiang Zhang,et al.  Multimodal classification of Alzheimer's disease and mild cognitive impairment , 2011, NeuroImage.

[5]  S. Portnoy Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .

[6]  John A. D. Aston,et al.  Tests for separability in nonparametric covariance operators of random surfaces , 2015, 1505.02023.

[7]  Trevor S. Smart,et al.  The Statistical Analysis of Functional MRI Data , 2010 .

[8]  Karl J. Friston Modalities, Modes, and Models in Functional Neuroimaging , 2009, Science.

[9]  M. Yuan,et al.  Convex Regularization for High-Dimensional Tensor Regression , 2015 .

[10]  Wenjiang J. Fu,et al.  Penalized Estimating Equations , 2003, Biometrics.

[11]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[12]  Peter X-K Song,et al.  Quadratic inference functions in marginal models for longitudinal data , 2009, Statistics in medicine.

[13]  Christian Keysers,et al.  Neural activities during affective processing in people with Alzheimer's disease , 2013, Neurobiology of Aging.

[14]  Lan Wang,et al.  GEE analysis of clustered binary data with diverging number of covariates , 2011, 1103.1795.

[15]  B. Li On Consistency of Generalized Estimating Equations , 1997 .

[16]  Claudia Kirch,et al.  Estimation of the distribution of change-points with appliction to fMRI data , 2011 .

[17]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[18]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[19]  Nicole M. Long,et al.  Journal of the American Statistical Association Spatio-spectral Mixed-effects Model for Functional Magnetic Resonance Imaging Data Spatio-spectral Mixed-effects Model for Functional Magnetic Resonance Imaging Data , 2022 .

[20]  Minge Xie,et al.  Asymptotics for generalized estimating equations with large cluster sizes , 2003 .

[21]  J. Kril,et al.  Specific temporoparietal gyral atrophy reflects the pattern of language dissolution in Alzheimer's disease. , 1999, Brain : a journal of neurology.

[22]  Alan J. Mayne,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[23]  Charles J Duffy,et al.  A visuospatial variant of mild cognitive impairment , 2003, Neurology.

[24]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[25]  L. Zhao,et al.  Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. , 1991, Biometrics.

[26]  Wiro J Niessen,et al.  A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. , 2010, Brain : a journal of neurology.

[27]  Christos Davatzikos,et al.  Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI , 2009, NeuroImage.

[28]  P. Reiss,et al.  Functional Generalized Linear Models with Images as Predictors , 2010, Biometrics.

[29]  Heping Zhang,et al.  Multiscale Adaptive Marginal Analysis of Longitudinal Neuroimaging Data with Time‐Varying Covariates , 2012, Biometrics.

[30]  Xiaoshan Li,et al.  Tucker Tensor Regression and Neuroimaging Analysis , 2018, Statistics in Biosciences.

[31]  A. Qu,et al.  Consistent Model Selection for Marginal Generalized Additive Model for Correlated Data , 2010 .

[32]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[33]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[34]  Moo K. Chung,et al.  Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset , 2009, NeuroImage.

[35]  D. Bennett,et al.  Loss of motor function in preclinical Alzheimer’s disease , 2011, Expert review of neurotherapeutics.

[36]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[37]  E. Tangalos,et al.  Mild Cognitive Impairment Clinical Characterization and Outcome , 1999 .

[38]  Kathryn Ziegler-Graham,et al.  Forecasting the global burden of Alzheimer’s disease , 2007, Alzheimer's & Dementia.

[39]  W. Pan Akaike's Information Criterion in Generalized Estimating Equations , 2001, Biometrics.

[40]  Hongtu Zhu,et al.  Tensor Regression with Applications in Neuroimaging Data Analysis , 2012, Journal of the American Statistical Association.

[41]  Ji Zhu,et al.  REGULARIZED 3D FUNCTIONAL REGRESSION FOR BRAIN IMAGE DATA VIA HAAR WAVELETS. , 2014, The annals of applied statistics.

[42]  Lexin Li,et al.  Regularized matrix regression , 2012, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[43]  Daoqiang Zhang,et al.  Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers , 2012, PloS one.

[44]  Lexin Li,et al.  STORE: Sparse Tensor Response Regression and Neuroimaging Analysis , 2016, J. Mach. Learn. Res..

[45]  Han Liu,et al.  Provable sparse tensor decomposition , 2015, 1502.01425.

[46]  Dinggang Shen,et al.  Multiscale Adaptive Generalized Estimating Equations for Longitudinal Neuroimaging Data ☆ , 2022 .

[47]  Paul M. Thompson,et al.  Fast and accurate modelling of longitudinal and repeated measures neuroimaging data , 2014, NeuroImage.

[48]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[49]  Ciprian M. Crainiceanu,et al.  Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer's disease risk , 2010, NeuroImage.

[50]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.

[51]  Vikas Singh,et al.  Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population , 2011, NeuroImage.

[52]  R. M. Balan,et al.  Asymptotic results with generalized estimating equations for longitudinal data , 2005 .

[53]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[54]  Wei Pan,et al.  SELECTING THE WORKING CORRELATION STRUCTURE IN GENERALIZED ESTIMATING EQUATIONS WITH APPLICATION TO THE LUNG HEALTH STUDY , 2002 .

[55]  Annie Qu,et al.  Penalized Generalized Estimating Equations for High‐Dimensional Longitudinal Data Analysis , 2012, Biometrics.

[56]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[57]  S. Resnick,et al.  Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index. , 2009, Brain : a journal of neurology.

[58]  Bin Hu,et al.  A Longitudinal Study of Atrophy in Amnestic Mild Cognitive Impairment and Normal Aging Revealed by Cortical Thickness , 2012, PloS one.

[59]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[60]  Andrea Tales,et al.  Abnormal visual search in mild cognitive impairment and Alzheimer’s disease , 2005, Neurocase.

[61]  Sophie Achard The Statistical Analysis of Functional MRI Data , 2008 .

[62]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[63]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[64]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[65]  A. Dale,et al.  Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis. , 2011, Radiology.