Memory materials: a unifying description

There are so many materials properties leading to memory that a unifying description seems impossible. However, it is easy to show that the majority of two-terminal electronic devices based on memory materials and systems, when subject to time-dependent perturbations, behave simply as, or as a combination of, memristors, memcapacitors, and meminductors; namely non-linear circuit elements with memory. This unifying description opens up new venues for digital and analog applications ranging from information storage to biologically-inspired circuits. In this review, interesting research opportunities that emerge from this new perspective will be outlined.

[1]  Hong-Bay Chung,et al.  Phase-change characteristics of chalcogenide Ge1Se1Te2 thin films for use in nonvolatile memories , 2007 .

[2]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[3]  Tomoji Kawai,et al.  Intrinsic mechanisms of memristive switching. , 2011, Nano letters.

[4]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[5]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[6]  M. Di Ventra,et al.  Frequency doubling and memory effects in the spin Hall effect , 2009 .

[7]  Shamik Das,et al.  Performance simulation and analysis of a CMOS/nano hybrid nanoprocessor system , 2009, Nanotechnology.

[8]  M. Di Ventra,et al.  Solid-state memcapacitive system with negative and diverging capacitance , 2009, 0912.4921.

[9]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[10]  Y. Pershin,et al.  Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior , 2011, IEEE Transactions on Electron Devices.

[11]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[12]  Mika Laiho,et al.  Stateful implication logic with memristors , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[13]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[14]  S. Menzel,et al.  Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems , 2007 .

[15]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[16]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[17]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[18]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[19]  M. Di Ventra,et al.  Chaotic memristor , 2011, 1101.4618.

[20]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  L. Chua Memristor-The missing circuit element , 1971 .

[22]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[23]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[24]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[25]  Shangqing Liu,et al.  Electric-pulse-induced capacitance change effect in perovskite oxide thin films , 2006 .

[26]  S. Raoux Phase Change Materials , 2009 .

[27]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[28]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[29]  G. Snider,et al.  Computing with hysteretic resistor crossbars , 2005 .

[30]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[31]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[32]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[33]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[34]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[35]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[36]  S. Ramanathan,et al.  Nanoscale imaging and control of resistance switching in VO2 at room temperature , 2010 .

[37]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[38]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[39]  T. Hasegawa,et al.  Effect of Ion Diffusion on Switching Voltage of Solid-Electrolyte Nanometer Switch , 2005 .

[40]  M. Wuttig,et al.  Sb-Se-based phase-change memory device with lower power and higher speed operations , 2006, IEEE Electron Device Letters.

[41]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[42]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[43]  Toshiyuki Nakagaki,et al.  Amoebae anticipate periodic events. , 2008, Physical review letters.

[44]  Sallee Klein,et al.  Memristive Adaptive Filters , 2010 .

[45]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[46]  K.K. Likharev,et al.  Reconfigurable Hybrid CMOS/Nanodevice Circuits for Image Processing , 2007, IEEE Transactions on Nanotechnology.

[47]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[48]  Hai Helen Li,et al.  Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.

[49]  R. Waser,et al.  Mechanism for bipolar switching in a Pt / TiO 2 / Pt resistive switching cell , 2009 .

[50]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[51]  R. Williams,et al.  Analog memory capacitor based on field-configurable ion-doped polymers , 2009 .

[52]  Massimiliano Di Ventra,et al.  Solving mazes with memristors: a massively-parallel approach , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Michael Kund,et al.  Selection of Optimized Materials for CBRAM Based on HT-XRD and Electrical Test Results , 2009 .

[54]  R. Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[55]  Jin Pyo Hong,et al.  Hysteretic bipolar resistive switching characteristics in TiO2/TiO2−x multilayer homojunctions , 2009 .

[56]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[57]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[58]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.