Best approximation in L p (μ, X ), II

Abstract The object of this paper is to prove the following theorem: If Y is a closed subspace of the Banach space X , then L 1 ( μ , Y ) is proximinal in L 1 ( μ , X ) if and only if L p ( μ , Y ) is proximinal in L p ( μ , Y ) for every p , 1 p Y is either reflexive or Y is a separable proximinal dual space, then L 1 ( μ , Y ) is proximinal in L 1 ( μ , X ).

[1]  D. Dulst Reflexive and superreflexive Banach spaces , 1978 .

[2]  Elliott Ward Cheney,et al.  Some best-approximation theorems in tensor-product spaces , 1981 .

[3]  R. Khalil Best approximation in LP (I, X) , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.