Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy

This paper presents the crystal growth and optical characterization of thulium-doped KLu(WO4)2 (KLuW). Thulium-doped KLuW macrodefect-free monoclinic single crystals (a*×b×c≈10×7×15 mm3) were grown by the top seeded solution growth slow cooling method with dopant concentrations of 0.5%, 1%, 3% and 5% atomic in solution. The evolution of unit cell parameters in relation with thulium doping was studied by X-ray powder patterns. Thulium energy levels in the KLuW host were determined by 6 K polarized optical absorption. The Judd–Ofelt parameters determined were Ω2=9.01×10-20 cm2, Ω4=1.36×10-20 cm2 and Ω6=1.43×10-20 cm2. The maximum emission cross section for the 1.9 μm emission, calculated by Füchtbauer–Ladenburg method, is 1.75×10-20 cm2, at 1845 nm with E//Nm. The intensity decay time from the emitting levels 1G4 and 3H4 levels in relation to the concentration were studied. For the lowest thulium concentration, the measured decay times from 1G4 and 3H4 emitting levels are 140 μs and 230 μs, respectively.

[1]  U. Griebner,et al.  Continuous-wave laser oscillation of Yb/sup 3+/ in monoclinic KLu(WO/sub 4/)/sub 2/ , 2004, IEEE Journal of Quantum Electronics.

[2]  Yan Wang,et al.  Spectra and intensity parameters of Tm3+:KGd (WO4)2 laser crystal , 2003 .

[3]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[4]  E. Cavalli,et al.  Growth and fluorescence properties of Tm3+ doped YVO4 and Y2O3 single crystals , 1997 .

[5]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[6]  K. Binnemans,et al.  Chapter 167 Spectral intensities of f-f transitions , 1998 .

[7]  F. Güell,et al.  1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals , 2004 .

[8]  Xavier Mateos,et al.  Broadly tunable laser operation near 2μm in a locally disordered crystal of Tm 3+ -doped NaGd(WO 4 ) 2 , 2006 .

[9]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[10]  D. Nguyen,et al.  Spectroscopy and dynamics of upconversion in Tm3+: YLiF4 , 1991 .

[11]  F. Güell,et al.  Crystal growth and spectroscopic characterization of Tm 3¿ -doped KYbÑWO 4 Ö 2 single crystals , 2002 .

[12]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[13]  Xavier Mateos,et al.  Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2 , 2006 .

[14]  A. A. Pavlyuk,et al.  LASERS: The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals , 2000 .

[15]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[16]  Lloyd L. Chase,et al.  Evaluation of absorption and emission properties of Yb/sup 3+/ doped crystals for laser applications , 1993 .

[17]  A. Kaminskiĭ,et al.  Crystalline Lasers: Physical Processes and Operating Schemes , 1996 .

[18]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[19]  Norman P. Barnes,et al.  Ho:Tm lasers. I. Theoretical , 1996 .

[20]  J. Gavaldà,et al.  Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution , 2001 .

[21]  Xavier Mateos,et al.  Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate , 2006 .

[22]  V. E. Kisel,et al.  Laser performance of Tm:KY(WO4)2 crystal , 2005 .

[23]  X. Mateos,et al.  Efficient 2-$mu$m Continuous-Wave Laser Oscillation of Tm$^3 + $:KLu(WO$_4$)$_2$ , 2006, IEEE Journal of Quantum Electronics.

[24]  T. E. Varitimos,et al.  Optical Intensities of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[25]  F. Diaz,et al.  Efficient tunable laser operation of Tm:KGd(WO/sub 4/)/sub 2/ in the continuous-wave regime at room temperature , 2004, IEEE Journal of Quantum Electronics.

[26]  M. Mond,et al.  Optical characterization of Yb,Tm:KYW crystal concerning laser application , 2002 .

[27]  W. Ryba-Romanowski,et al.  Blue up-conversion with excitation into Tm ions at 808 nm in YVO4 crystals co-doped with thulium and ytterbium , 2005 .

[28]  M. Aguiló,et al.  Liquid-Phase Epitaxy Crystal Growth of Monoclinic KLu 1- x Yb x (WO 4 ) 2 /KLu(WO 4 ) 2 Layers , 2006 .

[29]  M. Berkowski,et al.  Spectroscopic characterization of a Tm3+:SrGdGa3O7 crystal , 1999 .

[30]  Z. You,et al.  Growth and spectral properties of Tm3+-doped NaGd(WO4)2 crystal , 2006 .

[31]  A. Sennaroğlu,et al.  Effect of cross relaxation on the 1470 and 1800 nm emissions in Tm3+:TeO2–CdCl2 glass , 2004 .

[32]  F. Güell,et al.  Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals , 2004 .

[33]  J. Gavaldà,et al.  Growth and ultraviolet optical properties of KGd_1–xRE_x(WO_4)_2 single crystals , 1999 .

[34]  A. Kaminskii Modern developments in the physics of crystalline laser materials , 2003 .

[35]  M. Mond,et al.  Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm , 2002 .