The material properties of mitotic chromosomes

[1]  G. Tiana,et al.  Cohesin and CTCF control the dynamics of chromosome folding , 2022, Nature Genetics.

[2]  D. Gerlich,et al.  A mitotic chromatin phase transition prevents perforation by microtubules , 2022, Nature.

[3]  K. Maeshima,et al.  Chromatin behavior in living cells: Lessons from single‐nucleosome imaging and tracking , 2022, BioEssays : news and reviews in molecular, cellular and developmental biology.

[4]  Anna H Bizard,et al.  Nonlinear mechanics of human mitotic chromosomes , 2022, Nature.

[5]  L. Mirny,et al.  Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging , 2022, Science.

[6]  Ilya J. Finkelstein,et al.  In diverse conditions, intrinsic chromatin condensates have liquid-like material properties , 2021, bioRxiv.

[7]  L. Mirny,et al.  Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. , 2021, Cold Spring Harbor perspectives in biology.

[8]  R. Kornberg,et al.  Structure of mitotic chromosomes. , 2021, Molecular cell.

[9]  R. Kornberg,et al.  Mitotic Chromosome Condensation Driven by a Volume Phase Transition , 2021, bioRxiv.

[10]  K. Nasmyth,et al.  MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface , 2021, bioRxiv.

[11]  K. Rippe Liquid-Liquid Phase Separation in Chromatin. , 2021, Cold Spring Harbor perspectives in biology.

[12]  A. Coulon,et al.  Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics , 2021, bioRxiv.

[13]  J. R. Paulson,et al.  Mitotic chromosomes , 2021, Seminars in cell & developmental biology.

[14]  S. Redding Dynamic asymmetry and why chromatin defies simple physical definitions. , 2021, Current opinion in cell biology.

[15]  J. Peters,et al.  Genome folding through loop extrusion by SMC complexes , 2021, Nature Reviews Molecular Cell Biology.

[16]  C. Brangwynne,et al.  Mechanical frustration of phase separation in the cell nucleus by chromatin , 2020, bioRxiv.

[17]  C. Brangwynne,et al.  HP1α is a chromatin crosslinker that controls nuclear and mitotic chromosome mechanics , 2020, bioRxiv.

[18]  T. Misteli The Self-Organizing Genome: Principles of Genome Architecture and Function , 2020, Cell.

[19]  D. Gerlich,et al.  Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly , 2020, Nature.

[20]  A. Musacchio,et al.  Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA , 2020, Molecular cell.

[21]  H. Kimura,et al.  Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner , 2020, eLife.

[22]  M. Hendzel,et al.  Condensed Chromatin Behaves like a Solid on the Mesoscale In Vitro and in Living Cells , 2020, Cell.

[23]  K. Nasmyth,et al.  Organization of Chromosomal DNA by SMC Complexes. , 2019, Annual review of genetics.

[24]  Ilya J. Finkelstein,et al.  Human cohesin compacts DNA by loop extrusion , 2019, Science.

[25]  J. Peters,et al.  DNA loop extrusion by human cohesin , 2019, Science.

[26]  C. Brangwynne,et al.  The liquid nucleome – phase transitions in the nucleus at a glance , 2019, Journal of Cell Science.

[27]  Thomas G. Gilgenast,et al.  Chromatin Structure Dynamics During the Mitosis to G1-Phase Transition , 2019, Nature.

[28]  D. Gerlich,et al.  Organization of Chromatin by Intrinsic and Regulated Phase Separation , 2019, Cell.

[29]  D. Gerlich,et al.  Mitotic Chromosome Mechanics: How Cells Segregate Their Genome. , 2019, Trends in cell biology.

[30]  J. Dekker,et al.  A chromosome folding intermediate at the condensin-to-cohesin transition during telophase , 2019, Nature Cell Biology.

[31]  B. Garcia,et al.  Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of Transcription , 2019, Cell reports.

[32]  J. Marko,et al.  Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics , 2018, bioRxiv.

[33]  Ned S. Wingreen,et al.  Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome , 2018, Cell.

[34]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[35]  Lukas Burger,et al.  Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape , 2018, Nature Communications.

[36]  H. Maiato,et al.  Chromokinesins , 2018, Current Biology.

[37]  J. Marko,et al.  Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold , 2018, bioRxiv.

[38]  Marjon S. van Ruiten,et al.  SMC Complexes: Universal DNA Looping Machines with Distinct Regulators. , 2018, Trends in genetics : TIG.

[39]  Cees Dekker,et al.  Real-time imaging of DNA loop extrusion by condensin , 2018, Science.

[40]  J. Ellenberg,et al.  A quantitative map of human Condensins provides new insights into mitotic chromosome architecture , 2018, bioRxiv.

[41]  J. R. Paulson,et al.  Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis , 2018, Journal of Cell Science.

[42]  J. R. Paulson,et al.  A pathway for mitotic chromosome formation , 2018, Science.

[43]  K. Oka,et al.  A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation , 2018, Current Biology.

[44]  J. Ellenberg,et al.  Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins , 2017, The EMBO journal.

[45]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[46]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[47]  I. Matic,et al.  Mitotic post-translational modifications of histones promote chromatin compaction in vitro , 2017, Open Biology.

[48]  J. Zuber,et al.  DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes , 2017, Cell.

[49]  Ilya M Flyamer,et al.  A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture , 2017, bioRxiv.

[50]  T. Hirano,et al.  Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts , 2017, Science.

[51]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[52]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[53]  Peter H. L. Krijger,et al.  The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension , 2017, Cell.

[54]  Anthony A. Hyman,et al.  Ki-67 acts as a biological surfactant to disperse mitotic chromosomes , 2016, Nature.

[55]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[56]  L. Mirny,et al.  Chromosome Compaction by Active Loop Extrusion , 2016, Biophysical journal.

[57]  Masaki Sasai,et al.  Liquid-like behavior of chromatin. , 2016, Current opinion in genetics & development.

[58]  Anton Goloborodko,et al.  Compaction and segregation of sister chromatids via active loop extrusion , 2016, bioRxiv.

[59]  T. Hirano,et al.  Reconstitution of mitotic chromatids with a minimum set of purified factors , 2015, Nature Cell Biology.

[60]  K. Nasmyth,et al.  Condensin confers the longitudinal rigidity of chromosomes , 2015, Nature Cell Biology.

[61]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[62]  C. Ponting,et al.  Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery , 2014, eLife.

[63]  W. Fischle,et al.  A Cascade of Histone Modifications Induces Chromatin Condensation in Mitosis , 2014, Science.

[64]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[65]  Achilleas S Frangakis,et al.  Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30‐nm chromatin structure , 2012, The EMBO journal.

[66]  C. Haering,et al.  Condensin structures chromosomal DNA through topological links , 2011, Nature Structural &Molecular Biology.

[67]  J. Marko,et al.  Micromechanics of human mitotic chromosomes , 2011, Physical biology.

[68]  Morten O. Christensen,et al.  Mitotic chromosomes are constrained by topoisomerase II–sensitive DNA entanglements , 2010, The Journal of cell biology.

[69]  E. Salmon,et al.  Condensin regulates the stiffness of vertebrate centromeres. , 2009, Molecular biology of the cell.

[70]  Achilleas S Frangakis,et al.  Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ , 2008, Proceedings of the National Academy of Sciences.

[71]  H. Towbin,et al.  Analysis of Dynamic Changes in Post-translational Modifications of Human Histones during Cell Cycle by Mass Spectrometry*S , 2007, Molecular & Cellular Proteomics.

[72]  J. Ellenberg,et al.  Condensin I Stabilizes Chromosomes Mechanically through a Dynamic Interaction in Live Cells , 2006, Current Biology.

[73]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[74]  Jesse J. Lipp,et al.  Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin , 2005, Nature.

[75]  Benjamin A. Garcia,et al.  Regulation of HP1–chromatin binding by histone H3 methylation and phosphorylation , 2005, Nature.

[76]  C. Sunkel,et al.  The Condensin I Subunit Barren/CAP-H Is Essential for the Structural Integrity of Centromeric Heterochromatin during Mitosis , 2005, Molecular and Cellular Biology.

[77]  J. Ellenberg,et al.  Distinct functions of condensin I and II in mitotic chromosome assembly , 2004, Journal of Cell Science.

[78]  R. Gassmann,et al.  Mitotic chromosome formation and the condensin paradox. , 2004, Experimental cell research.

[79]  A. F. Neuwald,et al.  Differential Contributions of Condensin I and Condensin II to Mitotic Chromosome Architecture in Vertebrate Cells , 2003, Cell.

[80]  D. Cimini,et al.  Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. , 2003, Molecular biology of the cell.

[81]  R. Gassmann,et al.  Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. , 2003, Developmental cell.

[82]  Roland Eils,et al.  Global Chromosome Positions Are Transmitted through Mitosis in Mammalian Cells , 2003, Cell.

[83]  J. Marko,et al.  Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Hiroshi Kimura,et al.  Kinetics of Core Histones in Living Human Cells , 2001, The Journal of cell biology.

[85]  A. Libchaber,et al.  Elasticity and Structure of Eukaryote Chromosomes Studied by Micromanipulation and Micropipette Aspiration , 1997, The Journal of cell biology.

[86]  Daniel Axelrod,et al.  Chromatin Dynamics in Interphase Nuclei and Its Implications for Nuclear Structure , 1997, The Journal of cell biology.

[87]  R. Kobayashi,et al.  Condensins, Chromosome Condensation Protein Complexes Containing XCAP-C, XCAP-E and a Xenopus Homolog of the Drosophila Barren Protein , 1997, Cell.

[88]  T. Mitchison,et al.  A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro , 1994, Cell.

[89]  J. Swanson,et al.  Nuclear reassembly excludes large macromolecules. , 1987, Science.

[90]  J. Widom Physicochemical studies of the folding of the 100 A nucleosome filament into the 300 A filament. Cation dependence. , 1986, Journal of molecular biology.

[91]  E. Salmon,et al.  Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle , 1986, The Journal of cell biology.

[92]  J. Dubochet,et al.  Cryo‐electron microscopy of vitrified SV40 minichromosomes: the liquid drop model. , 1986, The EMBO journal.

[93]  U. K. Laemmli,et al.  Architecture of metaphase chromosomes and chromosome scaffolds , 1983, The Journal of cell biology.

[94]  C. D. Lewis,et al.  Higher order metaphase chromosome structure: Evidence for metalloprotein interactions , 1982, Cell.

[95]  U. K. Laemmli,et al.  Metaphase chromosome structure: Evidence for a radial loop model , 1979, Cell.

[96]  Toyoichi Tanaka Collapse of Gels and the Critical Endpoint , 1978 .

[97]  J. R. Paulson,et al.  The structure of histone-depleted metaphase chromosomes , 1977, Cell.

[98]  K. Dušek,et al.  Transition in swollen polymer networks induced by intramolecular condensation , 1968 .

[99]  J. Marko,et al.  Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical–micromechanical techniques , 2002, Journal of cellular biochemistry.

[100]  D. Chatenay,et al.  Reversible and irreversible unfolding of mitotic newt chromosomes by applied force. , 2000, Molecular biology of the cell.