Efficient verification of quantum gates with local operations

Efficient verification of the functioning of quantum devices is a key to the development of quantum technologies, but is a daunting task as the system size increases. Here we propose a simple and general framework for verifying unitary transformations that can be applied to both individual quantum gates and gate sets, including quantum circuits. This framework enables efficient verification of many important unitary transformations, including but not limited to all bipartite unitaries, Clifford unitaries, generalized controlled-$Z$ gates, generalized controlled-not gates, the controlled-swap gate, and permutation transformations. For all these unitaries, the sample complexity increases at most linearly with the system size and is often independent of the system size. Moreover, little overhead is incurred even if one can only prepare Pauli eigenstates and perform local measurements. Our approach is applicable in many scenarios in which randomized benchmarking (RB) does not apply and is thus instrumental to quantum computation and many other applications in quantum information processing.

[1]  E. Knill,et al.  Quantum Process Fidelity Bounds from Sets of Input States. , 2018, Physical review. A.

[2]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[3]  Holger F Hofmann Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. , 2005, Physical review letters.

[4]  Xiangdong Zhang,et al.  Efficient verification of quantum processes , 2019 .

[5]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[6]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[7]  C. Macchiavello,et al.  Quantum hypergraph states , 2012, 1211.5554.

[8]  Masahito Hayashi,et al.  Efficient Verification of Hypergraph States , 2018, Physical Review Applied.

[9]  You Zhou,et al.  Quantum gate verification and its application in property testing , 2019, 1911.06855.

[10]  M. Bremner,et al.  Instantaneous Quantum Computation , 2008, 0809.0847.

[11]  Ashley Montanaro,et al.  Optimal Verification of Entangled States with Local Measurements. , 2017, Physical review letters.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[13]  Masahito Hayashi,et al.  Optimal verification and fidelity estimation of maximally entangled states , 2019, Physical Review A.

[14]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[15]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[16]  Jonas Helsen,et al.  A new class of efficient randomized benchmarking protocols , 2018, npj Quantum Information.

[17]  Arnaud Carignan-Dugas,et al.  Characterizing universal gate sets via dihedral benchmarking , 2015, 1508.06312.

[18]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[19]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[20]  Yun-Guang Han,et al.  Efficient verification of bipartite pure states , 2019, Physical Review A.

[21]  Huangjun Zhu,et al.  Mutually unbiased bases as minimal Clifford covariant 2-designs , 2015, 1505.01123.

[22]  Steven T. Flammia,et al.  Estimating the fidelity of T gates using standard interleaved randomized benchmarking , 2016, 1608.02943.

[23]  Andrew W. Cross,et al.  Scalable randomised benchmarking of non-Clifford gates , 2015, npj Quantum Information.

[24]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[25]  Yun-Guang Han,et al.  Optimal Verification of Greenberger-Horne-Zeilinger States , 2019, 1909.08979.

[26]  A. H. Werner,et al.  Randomized Benchmarking for Individual Quantum Gates. , 2018, Physical review letters.

[27]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[28]  Masahito Hayashi,et al.  Optimal verification of two-qubit pure states , 2019, Physical Review A.

[29]  A. J. Scott,et al.  Weighted complex projective 2-designs from bases : Optimal state determination by orthogonal measurements , 2007, quant-ph/0703025.

[30]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[31]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[32]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[33]  Masahito Hayashi,et al.  Efficient Verification of Pure Quantum States in the Adversarial Scenario. , 2019, Physical review letters.

[34]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[35]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[36]  Masahito Hayashi,et al.  General framework for verifying pure quantum states in the adversarial scenario , 2019 .

[37]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[38]  Xiao-Dong Yu,et al.  Optimal verification of general bipartite pure states , 2019, npj Quantum Information.

[39]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[40]  Ri Qu,et al.  Encoding hypergraphs into quantum states , 2013 .

[41]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[42]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[43]  Andreas Klappenecker,et al.  Mutually unbiased bases are complex projective 2-designs , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[44]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.