Reliable recognition of handwritten digits using a cascade ensemble classifier system and hybrid features

Aiming at a high recognition rate and a low error rate at the same time, a cascade ensemble classifier system is proposed for the recognition of handwritten digits. The tradeoff among the error, rejection and recognition rates of the recognition system is analyzed theoretically. Three solutions are proposed: (i) extracting more discriminative features to attain a high recognition rate, (ii) using ensemble classifiers to suppress the error rate, and (iii) employing a novel cascade system to enhance the recognition rate and to reduce the rejection rate. Based on these strategies, seven sets of discriminative hybrid features and three sets of randomly selected features are extracted and used in the different layers of the cascade recognition system. Novel gating networks are used to congregate the confidence values of three parallel Artificial Neural Networks (ANNs) classifiers. The weights of the gating networks are trained by the Genetic Algorithms (GAs) to achieve the overall optimal performance. Experiments are conducted on the MNIST handwritten numeral database with encouraging results: a high reliability of 99.96% with a minimal rejection, or 99.59% correct recognition rate without rejection in the last cascade layer. In the verification model, a novel multi-modal nonparametric analysis for optimal feature dimensionality reduction is proposed. The computational complexity of our proposed algorithm is much lower than that of other similar approaches found in the literature. Experiments demonstrate that our proposed method can achieve a high feature compression performance without sacrificing its discriminant ability. The results of dimensionality reduction make the ANNs converge more easily. For the verification of confusing handwritten numeral pairs, our proposed algorithm is used to congregate features, and it outperforms the PCA and compares favorably with other nonparametric discriminant analysis methods.

[1]  Fuad Rahman,et al.  A multiexpert framework for character recognition: a novel application of Clifford networks , 2001, IEEE Trans. Neural Networks.

[2]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[3]  Anil K. Jain,et al.  Feature extraction methods for character recognition-A survey , 1996, Pattern Recognit..

[4]  Bernhard Schölkopf,et al.  Training Invariant Support Vector Machines , 2002, Machine Learning.

[5]  Luiz Eduardo Soares de Oliveira,et al.  Automatic Recognition of Handwritten Numerical Strings: A Recognition and Verification Strategy , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[7]  Ching Y. Suen,et al.  Feature selection using a proximity-index optimization model , 1994, Pattern Recognit. Lett..

[8]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[9]  Adam Krzyzak,et al.  Verification - a method of enhancing the recognizers of isolated and touching handwritten numerals , 2002, Pattern Recognit..

[10]  Meng Shi,et al.  Handwritten numeral recognition using gradient and curvature of gray scale image , 2002, Pattern Recognit..

[11]  Kevin W. Bowyer,et al.  Combination of Multiple Classifiers Using Local Accuracy Estimates , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[13]  Qing Wang,et al.  Hierarchical content classification and script determination for automatic document image processing , 2003, Pattern Recognit..

[14]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[15]  Don R. Hush,et al.  Selecting a restoration technique to minimize OCR error , 2003, IEEE Trans. Neural Networks.

[16]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Ching Y. Suen,et al.  Analysis of Class Separation and Combination of Class-Dependent Features for Handwriting Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ching Y. Suen,et al.  Hybrid feature extraction and feature selection for improving recognition accuracy of handwritten numerals , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[19]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[20]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Yuan Yan Tang,et al.  Multiresolution recognition of unconstrained handwritten numerals with wavelet transform and multilayer cluster neural network , 1996, Pattern Recognit..

[22]  Alessandro Sperduti,et al.  Theoretical and Experimental Analysis of a Two-Stage System for Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Sun Zheng Recognizing Handwritten Digits using Products of Experts , 2006 .

[24]  John W. Sammon,et al.  An Optimal Set of Discriminant Vectors , 1975, IEEE Transactions on Computers.

[25]  Kari Torkkola,et al.  Feature Extraction by Non-Parametric Mutual Information Maximization , 2003, J. Mach. Learn. Res..

[26]  Bernhard Schölkopf,et al.  Improving the Accuracy and Speed of Support Vector Machines , 1996, NIPS.

[27]  Jordi Vitrià,et al.  On the Selection and Classification of Independent Features , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  R. M. Brown,et al.  Handprinted symbol recognition system , 1988, Pattern Recognit..

[29]  Ching Y. Suen,et al.  Speed and accuracy: large-scale machine learning algorithms and their applications , 2003 .

[30]  Abdel Belaïd,et al.  Rejection strategy for convolutional neural network by adaptive topology applied to handwritten digits recognition , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[31]  Sung-Bae Cho,et al.  Neural-network classifiers for recognizing totally unconstrained handwritten numerals , 1997, IEEE Trans. Neural Networks.

[32]  Gonzalo Álvarez,et al.  Hierarchical classifiers based on neighbourhood criteria with adaptive computational cost , 2002, Pattern Recognit..

[33]  Michael D. Garris,et al.  Neural network-based systems for handprint OCR applications , 1998, IEEE Trans. Image Process..

[34]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Luigi Stringa,et al.  A New Set of Constraint-Free Character Recognition Grammars , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  T. D. Bui,et al.  Feature dimensionality reduction for the verification of handwritten numerals , 2004, Pattern Analysis and Applications.

[37]  Ching Y. Suen,et al.  Optimal combinations of pattern classifiers , 1995, Pattern Recognit. Lett..

[38]  Majid Ahmadi,et al.  A hierarchical neural network architecture for handwritten numeral recognition , 1997, Pattern Recognit..

[39]  Luiz Eduardo Soares de Oliveira,et al.  Impacts of verification on a numeral string recognition system , 2003, Pattern Recognit. Lett..

[40]  Ernst Kussul,et al.  Improved Method of Handwritten Digit Recognition , 2002 .

[41]  Lakhmi C. Jain,et al.  Designing classifier fusion systems by genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[42]  Luiz Eduardo Soares de Oliveira,et al.  A Methodology for Feature Selection Using Multiobjective Genetic Algorithms for Handwritten Digit String Recognition , 2003, Int. J. Pattern Recognit. Artif. Intell..

[43]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[44]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[45]  Tatiana Baidyk,et al.  Improved method of handwritten digit recognition tested on MNIST database , 2004, Image Vis. Comput..

[46]  G. Kim,et al.  FEATURE SELECTION USING GENETIC ALGORITHMS FOR HANDWRITTEN CHARACTER RECOGNITION , 2004 .

[47]  Hiroshi Sako,et al.  Confidence Transformation for Combining Classifiers , 2004, Pattern Analysis and Applications.

[48]  Keinosuke Fukunaga,et al.  Application of the Karhunen-Loève Expansion to Feature Selection and Ordering , 1970, IEEE Trans. Computers.

[49]  Cheng-Lin Liu,et al.  Handwritten digit recognition: benchmarking of state-of-the-art techniques , 2003, Pattern Recognit..

[50]  George Nagy,et al.  State of the art in pattern recognition , 1968 .

[51]  Ludmila I. Kuncheva,et al.  A Theoretical Study on Six Classifier Fusion Strategies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Jian-xiong Dong,et al.  Fast SVM training algorithm with decomposition on very large data sets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Mineichi Kudo,et al.  Comparison of algorithms that select features for pattern classifiers , 2000, Pattern Recognit..

[54]  Ludmila I. Kuncheva,et al.  Switching between selection and fusion in combining classifiers: an experiment , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[55]  Majid Ahmadi,et al.  Recognition of handwritten numerals with multiple feature and multistage classifier , 1995, Pattern Recognit..

[56]  Huang Tong-cheng Wavelet Feature Extraction for the Recognition and Verification of Handwritten Numerals , 2006 .

[57]  David G. Stork,et al.  Pattern Classification , 1973 .

[58]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[59]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[60]  Young-Joon Kim,et al.  Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural network , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[61]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[62]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[63]  Michael T. Manry,et al.  Comparisons of a neural network and a nearest-neighbor classifier via the numeric handprint recognition problem , 1995, IEEE Trans. Neural Networks.

[64]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Hiroshi Sako,et al.  Handwritten digit recognition using state-of-the-art techniques , 2002, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition.

[66]  Trevor Hastie,et al.  Flexible discriminant and mixture models , 2000 .

[67]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[68]  Ching Y. Suen,et al.  Computer recognition of unconstrained handwritten numerals , 1992, Proc. IEEE.

[69]  Sung-Bae Cho,et al.  Multiple network fusion using fuzzy logic , 1995, IEEE Trans. Neural Networks.

[70]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Seong-Whan Lee,et al.  A truly 2-D hidden Markov model for off-line handwritten character recognition , 1998, Pattern Recognit..

[72]  K. Fukunaga,et al.  Nonparametric Discriminant Analysis , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[74]  Ching Y. Suen,et al.  Extraction of hybrid complex wavelet features for the verification of handwritten numerals , 2004, Ninth International Workshop on Frontiers in Handwriting Recognition.

[75]  Hong Yan,et al.  Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM) , 1999, IEEE Trans. Neural Networks.

[76]  Yuan Yan Tang,et al.  Feature extraction using wavelet and fractal , 2001, Pattern Recognit. Lett..

[77]  Flávio Bortolozzi,et al.  The recognition of handwritten numeral strings using a two-stage HMM-based method , 2003, International Journal on Document Analysis and Recognition.

[78]  Andrew M. Gillies,et al.  A model-based computer vision system for recognizing handwritten ZIP codes , 1989, Machine Vision and Applications.

[79]  L. Prasad,et al.  WAVELET ANALYSIS with Applications to IMAGE PROCESSING , 1997 .

[80]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[81]  Adnan Amin,et al.  Hand-printed arabic character recognition system using an artificial network , 1996, Pattern Recognit..

[82]  M. Bressan,et al.  Nonparametric discriminant analysis and nearest neighbor classification , 2003, Pattern Recognit. Lett..

[83]  Nathan Intrator,et al.  Optimal ensemble averaging of neural networks , 1997 .

[84]  Ching Y. Suen,et al.  Differentiation between alphabetic and numeric data using NN ensembles , 2002, Object recognition supported by user interaction for service robots.

[85]  Ching Y. Suen,et al.  Multi-modal nonlinear feature reduction for the recognition of handwritten numerals , 2004, First Canadian Conference on Computer and Robot Vision, 2004. Proceedings..

[86]  Ching Y. Suen,et al.  Distance features for neural network-based recognition of handwritten characters , 1998, International Journal on Document Analysis and Recognition.

[87]  S. Mallat A wavelet tour of signal processing , 1998 .

[88]  Luigi Stringa Efficient classification of totally unconstrained handwritten numerals with a trainable multilayer network , 1989, Pattern Recognit. Lett..

[89]  Paul D. Gader,et al.  Automatic Feature Generation for Handwritten Digit Recognition , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[90]  Thomas Serre,et al.  Hierarchical classification and feature reduction for fast face detection with support vector machines , 2003, Pattern Recognit..

[91]  Ching Y. Suen,et al.  Discrimination of similar handwritten numerals based on invariant curvature features , 2005, Pattern Recognit..

[92]  Laurent Mascarilla,et al.  Reject Strategies Driven Combination of Pattern Classifiers , 2002, Pattern Analysis & Applications.

[93]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  Venu Govindaraju,et al.  GP-based secondary classifiers , 2005, Pattern Recognit..

[95]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[97]  Horst Bunke,et al.  Optimization of Weights in a Multiple Classifier Handwritten Word Recognition System Using a Genetic Algorithm , 2004 .

[98]  Linda G. Shapiro,et al.  A hierarchical multiple classifier learning algorithm , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[99]  Anil K. Jain,et al.  Dimensionality reduction using genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[100]  Horst Bunke,et al.  Rejection strategies for offline handwritten sentence recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[101]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[102]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[103]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[104]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[105]  Adam Krzyzak,et al.  Contour-based handwritten numeral recognition using multiwavelets and neural networks , 2003, Pattern Recognit..

[106]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[107]  Loo-Nin Teow,et al.  Robust vision-based features and classification schemes for off-line handwritten digit recognition , 2002, Pattern Recognit..

[108]  Bernard Dubuisson,et al.  A statistical decision rule with incomplete knowledge about classes , 1993, Pattern Recognit..

[109]  Josef Kittler,et al.  Experimental evaluation of expert fusion strategies , 1999, Pattern Recognit. Lett..

[110]  Byung Ro Moon,et al.  Hybrid Genetic Algorithms for Feature Selection , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[111]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[112]  Robert Sabourin,et al.  An optimized hill climbing algorithm for feature subset selection: evaluation on handwritten character recognition , 2004, Ninth International Workshop on Frontiers in Handwriting Recognition.

[113]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[114]  Xiaoqing Ding,et al.  On improvement of feature extraction algorithms for discriminative pattern classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[115]  Raimondo Schettini,et al.  A hierarchical classification strategy for digital documents , 2002, Pattern Recognit..

[116]  Ching Y. Suen,et al.  Recognition of similar objects using 2-D wavelet-fractal feature extraction , 2002, Object recognition supported by user interaction for service robots.