Forcing operators on MTL‐algebras

We study the forcing operators on MTL-algebras, an algebraic notion inspired by the Kripke semantics of the monoidal t -norm based logic (MTL). At logical level, they provide the notion of the forcing value of an MTL-formula. We characterize the forcing operators in terms of some MTL-algebras morphisms. From this result we derive the equality of the forcing value and the truth value of an MTL-formula (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  C. Tsinakis,et al.  A Survey of Residuated Lattices , 2002 .

[2]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[3]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[4]  Antonio di Nola,et al.  Forcing in Łukasiewicz Predicate Logic , 2008, Stud Logica.

[5]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..

[6]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[7]  George Georgescu,et al.  On the Forcing Semantics for Monoidal t-norm Based Logic , 2007, J. Univers. Comput. Sci..

[8]  George Georgescu,et al.  Pseudo-t-norms and pseudo-BL algebras , 2001, Soft Comput..

[9]  Franco Montagna,et al.  Kripke Semantics, Undecidability and Standard Completeness for Esteva and Godo's Logic MTL∀ , 2002, Stud Logica.

[10]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[11]  Witold Pedrycz,et al.  The design of decision trees in the framework of granular data and their application to software quality models , 2001, Fuzzy Sets Syst..

[12]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[13]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[14]  Franco Montagna,et al.  A Proof of Standard Completeness for Esteva and Godo's Logic MTL , 2002, Stud Logica.

[15]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[16]  E. J. Lemmon,et al.  Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).

[17]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras , 1998, Soft Comput..

[18]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[19]  Franco Montagna,et al.  Kripke‐style semantics for many‐valued logics , 2003, Math. Log. Q..

[20]  Dietrich Schwartz,et al.  Polyadic MV-Algebras , 1980, Math. Log. Q..

[21]  Franco Montagna,et al.  Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies , 2009, Ann. Pure Appl. Log..

[22]  Thomas Jech,et al.  Lectures in set theory,: With particular emphasis on the method of forcing , 1971 .

[23]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[24]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[25]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .