Quantum radar technology and its developments

Quantum metrology exploits quantum phenomena to improve the measurement sensitivity. Theoretical analysis shows that quantum measurement can break through the standard quantum limits and reach super sensitivity level. Quantum radar systems based on quantum measurement can fufill not only conventional target detection and recognition tasks but also capable of detecting and identifying the RF stealth platform and weapons systems. The theoretical basis, classification, physical realization of quantum radar is discussed comprehensively in this paper. And the technology state and open questions of quantum radars is reviewed at the end.

[1]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[2]  C. W. J. Beenakker,et al.  Entangled microwave photons from quantum dots , 2005 .

[3]  James F. Smith Quantum interferometer and radar theory based on N00N, M and M or linear combinations of entangled states , 2010, Defense + Commercial Sensing.

[4]  C. Beenakker,et al.  Emission of polarization-entangled microwave photons from a pair of quantum dots. , 2005, Physical Review Letters.

[5]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[6]  Silvano Donati,et al.  Photodetectors: Devices, Circuits and Applications , 1999 .

[7]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[8]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[9]  G Brida,et al.  Experimental realization of quantum illumination. , 2013, Physical review letters.

[10]  Robert W. Boyd,et al.  Quantum-secured imaging , 2012, 1212.2605.

[11]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[12]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[13]  E. Solano,et al.  Photodetection of propagating quantum microwaves in circuit QED , 2009, 0906.4362.

[14]  Robert E. Jehle,et al.  Impulse transmitter and quantum detection radar system , 1991 .

[15]  A. Rebane,et al.  Multiphoton quantum interference in organic solid , 2005, International Quantum Electronics Conference, 2005..

[16]  Marco Lanzagorta,et al.  Quantum Radar , 2011, Quantum Radar.

[17]  A. Gatti,et al.  Quantum Imaging , 2002 .

[18]  J J García-Ripoll,et al.  Microwave photon detector in circuit QED. , 2008, Physical review letters.

[19]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[20]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[21]  S. Olivares,et al.  Experimental realisation of quantum illumination : Supplementary Information , 2013 .

[22]  Mikhail I. Kolobov,et al.  Quantum imaging , 2009, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics.

[23]  Pavel Lougovski,et al.  Quantum Computing, Metrology, and Imaging , 2005 .

[24]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.