Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms

This survey concerns techniques in design and analysis of algo- rithms that can be used to solve NP hard problems faster than ex- haustive search algorithms (but still in exponential time). We discuss several of such techniques: Measure & Conquer, Exponential Lower Bounds, Bounded Tree-width, and Memorization. We also consider some extensions of the mentioned techniques to parameterized algo- rithms.

[1]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[2]  Alexander S. Kulikov,et al.  A new approach to proving upper bounds for MAX-2-SAT , 2006, SODA '06.

[3]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[4]  David Eppstein,et al.  3-Coloring in Time O(1.3289^n) , 2000, J. Algorithms.

[5]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2004, J. Algorithms.

[6]  Walter Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[7]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[8]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[9]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2001, J. Algorithms.

[10]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[11]  Ge Xia,et al.  Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size , 2005, SIAM J. Comput..

[12]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[13]  Rolf Niedermeier,et al.  Graph Separators: A Parameterized View , 2001, COCOON.

[14]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[15]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[16]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[17]  Fabrizio Grandoni,et al.  Refined memorization for vertex cover , 2005, Inf. Process. Lett..

[18]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[19]  David Eppstein Small Maximal Independent Sets and Faster Exact Graph Coloring , 2001, WADS.

[20]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[21]  David Eppstein,et al.  Quasiconvex analysis of backtracking algorithms , 2003, SODA '04.

[22]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[23]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[24]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[25]  Fedor V. Fomin,et al.  Reports in Informatics , 2005 .

[26]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[27]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[28]  Gerhard J. Woeginger,et al.  Exact (Exponential) Algorithms for the Dominating Set Problem , 2004, WG.

[29]  Rolf Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[30]  Kazuo Iwama,et al.  Worst-Case Upper Bounds for kSAT (Column: Algorithmics) , 2004, Bull. EATCS.

[31]  Fabrizio Grandoni,et al.  A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.

[32]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[33]  Michael Alekhnovich,et al.  Exponential Lower Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas , 2004, SODA '04.

[34]  Gerhard J. Woeginger,et al.  Space and Time Complexity of Exact Algorithms : Some Open Problems , 2004 .

[35]  Stefan Richter,et al.  Algorithms Based on the Treewidth of Sparse Graphs , 2005, WG.

[36]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[37]  Fedor V. Fomin,et al.  Exact (Exponential) Algorithms for Treewidth and Minimum Fill-In , 2004, ICALP.

[38]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[39]  Leslie E. Trotter,et al.  Properties of vertex packing and independence system polyhedra , 1974, Math. Program..

[40]  Gerhard J. Woeginger,et al.  Exact algorithms for the Hamiltonian cycle problem in planar graphs , 2006, Oper. Res. Lett..

[41]  Russell Impagliazzo,et al.  A lower bound for DLL algorithms for k-SAT (preliminary version) , 2000, SODA '00.

[42]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[43]  Rolf Niedermeier,et al.  On Efficient Fixed Parameter Algorithms for WEIGHTED VERTEX COVER , 2000, ISAAC.

[44]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[45]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[46]  Robert Elsässer,et al.  New spectral lower bounds on the bisection width of graphs , 2000, Theor. Comput. Sci..

[47]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[48]  Rolf Niedermeier,et al.  Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..

[49]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[50]  Ryan Williams A new algorithm for optimal constraint satisfaction and its implications , 2004, Electron. Colloquium Comput. Complex..

[51]  Ge Xia,et al.  Labeled Search Trees and Amortized Analysis: Improved Upper Bounds for NP-Hard Problems , 2003, Algorithmica.

[52]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[53]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[54]  Jesper Makholm Byskov Enumerating maximal independent sets with applications to graph colouring , 2004, Oper. Res. Lett..

[55]  Hisao Tamaki,et al.  Optimal Branch-Decomposition of Planar Graphs in O(n3) Time , 2005, ICALP.

[56]  Paul D. Seymour,et al.  Graph Minors. XI. Circuits on a Surface , 1994, J. Comb. Theory, Ser. B.

[57]  Uwe Schöning,et al.  Algorithmics in Exponential Time , 2005, STACS.

[58]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[59]  Jan Arne Telle,et al.  Two Birds with One Stone: The Best of Branchwidth and Treewidth with One Algorithm , 2006, LATIN.

[60]  Dimitrios M. Thilikos,et al.  New upper bounds on the decomposability of planar graphs , 2006, J. Graph Theory.

[61]  Burkhard Monien,et al.  Upper bounds on the bisection width of 3- and 4-regular graphs , 2006, J. Discrete Algorithms.