Self-Learning Algorithm for Visual Recognition and Object Categorization for Autonomous Mobile Robots

In order to execute tasks and to navigate in an environment, an autonomous mobile robot needs a complex visual system to cope with detection, characterization and recognition of places and objects. We are interested here in the development of detection and characterization functions, integrated on a robot. In this paper we consider an approach to the development of categorization systems based on building by a robot of its own semantics, which used only by the robot and is not designed for human perception.

[1]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).