Euler-Maclaurin Expansions and Quadrature Formulas of Hyper-singular Integrals with an Interval Variable
暂无分享,去创建一个
[1] Jeng-Tzong Chen,et al. Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two‐dimensional elasticity , 2002 .
[2] Xiaoping Zhang,et al. Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals , 2010, J. Comput. Appl. Math..
[3] Erdogan Madenci,et al. Numerical solution of integral equations with logarithmic-, Cauchy- and Hadamard-type singularities , 1998 .
[4] John L. Tsalamengas,et al. Quadrature rules for weakly singular, strongly singular, and hypersingular integrals in boundary integral equation methods , 2015, J. Comput. Phys..
[5] Luiz C. Wrobel,et al. Hypersingular boundary integral equation for axisymmetric elasticity , 2001 .
[6] Philsu Kim,et al. Two trigonometric quadrature formulae for evaluating hypersingular integrals , 2003 .
[7] Giovanni Monegato,et al. The Euler-Maclaurin expansion and finite-part integrals , 1998, Numerische Mathematik.
[8] Moshe Israeli,et al. Quadrature methods for periodic singular and weakly singular Fredholm integral equations , 1988, J. Sci. Comput..
[9] Chung-Yuen Hui,et al. EVALUATIONS OF HYPERSINGULAR INTEGRALS USING GAUSSIAN QUADRATURE , 1999 .
[10] Y. Z. Chen. Hypersingular integral equation method for three‐dimensional crack problem in shear mode , 2004 .
[11] Zhu Wang,et al. Asymptotic error expansions for hypersingular integrals , 2013, Adv. Comput. Math..
[12] Dehao Yu,et al. A rectangle rule for the computation of hypersingular integral , 2010 .
[13] Gennadi Vainikko,et al. Hypersingular Integral Equations and Their Applications , 2003 .