Parametric Analysis of Excited Round Jets - Numerical Study

A computational analysis of excited round jets is presented with emphasis on jet bifurcation phenomenon due to superposition of axial and flapping forcing terms. Various excitation parameters are examined including the amplitudes of the forcing, their frequencies and phase shift. It is shown that alteration of these parameters significantly influences the spatial jet evolution. This dependence may be used to control the jet behaviour in a wide range of qualitatively different flow structures, starting from a modification of the spreading rate of a single connected jet, through large scale deformation of an asymmetric jet, onto jet bifurcation leading to a doubly and even triply split time-averaged jet, displaying different strengths and locations of the branches. We establish that: (i) jet splitting is possible only when the amplitudes of the forcing terms are comparable to or larger than the level of natural turbulence; (ii) the angle between the developing jet branches can be directly controlled by the frequency of the axial forcing and the phase shift between axial and flapping forcing. An optimum forcing frequency is determined, leading to the largest spreading rate.

[1]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[2]  Hachimi Fellouah,et al.  The flow field in turbulent round free jets , 2012 .

[3]  R. Knikker A comparative study of high‐order variable‐property segregated algorithms for unsteady low Mach number flows , 2011 .

[4]  P. Saugat Large eddy simulation for incompressible flows , 2001 .

[5]  S. Drobniak,et al.  Self-sustained oscillations in a homogeneous-density round jet , 2013 .

[6]  Ionut Danaila,et al.  Direct numerical simulation of bifurcating jets , 2000 .

[7]  R. A. Antonia,et al.  Effect of different initial conditions on a turbulent round free jet , 2002 .

[8]  Sylvain Laizet,et al.  High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy , 2009, J. Comput. Phys..

[9]  Dorota Kral,et al.  Active Flow Control Technology , 1999 .

[10]  Christophe Bailly,et al.  Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 105 , 2012, Journal of Fluid Mechanics.

[11]  Jochen Fröhlich,et al.  Numerical effects contaminating LES; a mixed story , 2001 .

[12]  Geert Brethouwer,et al.  A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet , 1998 .

[13]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[14]  A. Hussain,et al.  The mechanics of vortex pairing in a circular jet under controlled excitation , 1979 .

[15]  R. A. Antonia,et al.  Effect of initial conditions on the near-field development of a round jet , 2004 .

[16]  Parviz Moin,et al.  Jet Mixing Enhancement by High-Amplitude Fluidic Actuation , 2000 .

[17]  H. Pitsch,et al.  Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D) , 2000 .

[18]  A. Leonard,et al.  Bifurcating jets at high Reynolds numbers , 1988 .

[19]  S. Drobniak,et al.  Quality of LES Predictions of Isothermal and Hot Round Jet , 2008 .

[20]  Artur Tyliszczak,et al.  LES of Variable Density Bifurcating Jets , 2007 .

[21]  H. Sadeghi,et al.  The Preferred and Shear Layer Modes in a Jet under Passive Controls , 2012 .

[22]  R. D. Webb,et al.  A branching liquid jet , 1991 .

[23]  B. Boersma,et al.  Optimization of turbulent jet mixing , 2001 .

[24]  Khairul Q. Zaman,et al.  Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response , 1980, Journal of Fluid Mechanics.

[25]  S. Menon,et al.  Large-eddy simulation of pulsed high-speed subsonic jets in a turbulent crossflow , 2012 .

[26]  A. Pollard,et al.  Effects of passive control rings positioned in the shear layer and potential core of a turbulent round jet , 2012 .

[27]  Artur Tyliszczak,et al.  A new approach to sub-grid surface tension for LES of two-phase flows , 2012, J. Comput. Phys..

[28]  S. Crow,et al.  Orderly structure in jet turbulence , 1971, Journal of Fluid Mechanics.

[29]  A. Tyliszczak Assessment of implementation variants of conditional scalar dissipation rate in LES-CMC simulation of auto-ignition of hydrogen jet , 2013 .

[30]  Witold Elsner,et al.  LES modeling of converging-diverging turbulent channel flow , 2012 .

[31]  R. A. Antonia,et al.  Effect of initial conditions on a circular jet , 2001 .

[32]  B. Geurts,et al.  A framework for predicting accuracy limitations in large-eddy simulation , 2002 .

[33]  B. Geurts Elements of direct and large-eddy simulation , 2003 .

[34]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[35]  Nobuhide Kasagi,et al.  Active control of an axisymmetric jet with distributed electromagnetic flap actuators , 2004 .

[36]  Artur Tyliszczak LES-CMC and LES-Flamelet simulation of non-premixed methane flame (Sandia F) , 2013 .

[37]  Uwe Ehrenstein,et al.  On the relation between kinetic energy production in adverse-pressure gradient wall turbulence and streak instability , 2012 .

[38]  A. Sadiki,et al.  A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations , 2003 .

[39]  Chih-Ming Ho,et al.  Preferred modes and the spreading rates of jets , 1983 .

[40]  Holger Foysi,et al.  Large-eddy simulation of variable-density round and plane jets , 2010 .

[41]  B. Geurts,et al.  Discretization error dominance over subgrid terms in large eddy simulation of compressible shear layers in 2D , 1994 .

[42]  Vincent Heuveline,et al.  On higher‐order mixed FEM for low Mach number flows: application to a natural convection benchmark problem , 2003 .

[43]  O. Métais,et al.  Vortex control of bifurcating jets: A numerical study , 2002 .

[44]  William C. Reynolds,et al.  BIFURCATING AND BLOOMING JETS , 2003 .