Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints.

We present a topological model for the composition dependence of glass transition temperature and fragility. Whereas previous topological models are derived for zero temperature conditions, our approach incorporates the concept of temperature-dependent constraints that freeze in as the system is cooled from high temperature. Combining this notion of temperature-dependent constraints with the Adam-Gibbs model of viscosity, we derive an analytical expression for the scaling of glass transition temperature and fragility in the binary Ge(x)Se(1-x) system. In the range of 0<or=x<or=1/3, we reproduce the modified Gibbs-DiMarzio equation of Sreeram et al. [J. Non-Cryst. Solids 127, 287 (1991)] but without any empirical fitting parameters. The modified Gibbs-DiMarzio equation breaks down for 1/3<x<or=2/5, where the glass transition temperature decreases with increasing germanium content.

[1]  P. Boolchand,et al.  129I and 119Sn Mössbauer spectroscopy, reversibility window and nanoscale phase separation in binary GexSe1−x glasses , 2007 .

[2]  G. Tarjus,et al.  On the correlation between fragility and stretching in glass-forming liquids , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  A. R. Cooper,et al.  Topologically disordered networks of rigid polytopes , 1990 .

[4]  J. Mauro,et al.  Model interaction potentials for selenium fromab initiomolecular simulations , 2005 .

[5]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[6]  J. Mauro,et al.  Selenium glass transition : A model based on the enthalpy landscape approach and nonequilibrium statistical mechanics , 2007 .

[7]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[8]  Thomas A. Weber,et al.  Dynamics of structural transitions in liquids , 1983 .

[9]  P. Richet,et al.  Silicate melt structural relaxation: rheology, kinetics, and Adam-Gibbs theory , 1996 .

[10]  Cornelius T. Moynihan,et al.  Correlation between the Width of the Glass Transition Region and the Temperature Dependence of the Viscosity of High‐Tg Glasses , 1993 .

[11]  Arun K. Varshneya,et al.  A review of the average coordination number concept in multicomponent chalcogenide glass systems , 1993 .

[12]  C. Hoheisel Transport properties of molecular liquids , 1994 .

[13]  F. Stillinger,et al.  Energy landscape diversity and supercooled liquid properties , 2002 .

[14]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition: A Potential Energy Barrier Picture , 1969 .

[15]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[16]  Frank H. Stillinger,et al.  Supercooled liquids, glass transitions, and the Kauzmann paradox , 1988 .

[17]  Donald R Uhlmann,et al.  Glass--science and technology , 1980 .

[18]  Ranko Richert,et al.  Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy , 1998 .

[19]  G. Naumis Glass transition phenomenology and flexibility: An approach using the energy landscape formalism , 2006 .

[20]  J. Simmons,et al.  Analysis of Low Temperature Viscosity Data for Three NBS Standard Glasses. , 1974, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[21]  G. Scherer Viscous Sintering of a Bimodal Pore‐Size Distribution , 1984 .

[22]  Matthieu Micoulaut,et al.  Glass structure, rigidity transitions and the intermediate phase in the Ge–As–Se ternary , 2000 .

[23]  G. Biroli,et al.  On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. , 2004, Journal of Chemical Physics.

[24]  G. Naumis Variation of the glass transition temperature with rigidity and chemical composition , 2005, cond-mat/0510054.

[25]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[26]  J. Mauro,et al.  Impact of fragility on enthalpy relaxation in glass. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Salmon,et al.  Defects in a disordered world: the structure of glassy GeSe2 , 2000, Physical review letters.

[28]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[29]  C. Angell,et al.  Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. , 1992, Physical review. B, Condensed matter.

[30]  Thorpe,et al.  Elastic properties of glasses. , 1985, Physical review letters.

[31]  C. Angell Liquid fragility and the glass transition in water and aqueous solutions. , 2002, Chemical reviews.

[32]  P. B. Macedo,et al.  Effects of a Distribution of Volume Relaxation Times in the Annealing of BSC Glass. , 1967, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[33]  N. Soga,et al.  Elastic properties of GeSe glass under pressure , 1978 .

[34]  T. Rouxel,et al.  Indentation creep of Ge–Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow , 2002 .

[35]  J. Mauro,et al.  Monte Carlo simulation ofSexTe1−xglass structure withab initiopotentials , 2005 .

[36]  A. Varshneya,et al.  Viscosity of chalcogenide glass-forming liquids: an anomaly in the ‘strong’ and ‘fragile’ classification , 1996 .

[37]  On the glass transition temperature in covalent glasses , 1997, cond-mat/9809245.

[38]  P. Gupta Rigidity, Connectivity, and Glass-Forming Ability , 1993 .

[39]  A. Varshneya,et al.  Gibbs-DiMarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses , 1991 .

[40]  Punit Boolchand,et al.  Rigidity transitions in binary Ge–Se glasses and the intermediate phase , 2001 .

[41]  H. Klauk,et al.  Poisson's ratio and the fragility of glass-forming liquids , 2004, Nature.

[42]  David J. Wales,et al.  Energy landscapes of model glasses. II. Results for constant pressure , 2003 .

[43]  J. Mauro,et al.  The laboratory glass transition. , 2007, The Journal of chemical physics.

[44]  J. C. Phillips,et al.  Rings and rigidity transitions in network glasses , 2003 .

[45]  J. Zarzycki,et al.  Glasses and the vitreous state , 1991 .

[46]  Y. Yue,et al.  Enthalpy relaxation of hyperquenched glasses and its possible link to α-and β-relaxations , 2008 .

[47]  D. Price,et al.  The structure of vitreous and liquid GeSe2: a neutron diffraction study , 1990 .

[48]  Thomas M Truskett,et al.  The equation of state of an energy landscape , 1999 .

[49]  Is the Fragility of a Liquid Embedded in the Properties of Its Glass? , 2003, Science.

[50]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[51]  J. Mauro,et al.  Enthalpy landscapes and the glass transition , 2008 .

[52]  Sokolov,et al.  Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties. , 1993, Physical review letters.

[53]  C. Angell Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit , 1988 .

[54]  J. Mauro,et al.  Modeling of Rigidity Percolation and Incipient Plasticity in Germanium–Selenium Glasses , 2007 .

[55]  C. Angell,et al.  A thermodynamic connection to the fragility of glass-forming liquids , 2001, Nature.

[56]  C. Angell Spectroscopy simulation and scattering, and the medium range order problem in glass , 1985 .

[57]  F. Stillinger ENUMERATION OF ISOBARIC INHERENT STRUCTURES FOR THE FRAGILE GLASS FORMER O-TERPHENYL , 1998 .

[58]  J. Mauro,et al.  Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero. , 2006, The journal of physical chemistry. B.

[59]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[60]  J. Mauro,et al.  A Nonequilibrium Statistical Mechanical Model of Structural Relaxation in Glass , 2006 .

[61]  Energy landscape and rigidity. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  M. Toplis Quantitative links between microscopic properties and viscosity of liquids in the system SiO2–Na2O , 2001 .

[63]  Cai,et al.  Floppy modes in network glasses. , 1989, Physical review. B, Condensed matter.

[64]  J. C. Phillips,et al.  Constraint theory, vector percolation and glass formation , 1985 .

[65]  M. Thorpe,et al.  Rigidity theory and applications , 2002 .

[66]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[67]  Jeppe C. Dyre,et al.  Colloquium : The glass transition and elastic models of glass-forming liquids , 2006 .

[68]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[69]  C. Angell Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems☆ , 1991 .

[70]  Srikanth Sastry,et al.  The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids , 2000, Nature.

[71]  K. S. Sangunni,et al.  Structural correlations in GexSe1−x glasses – a neutron diffraction study , 1998 .

[72]  Michael J. Gillan,et al.  First-principles calculation of transport coefficients , 1998 .

[73]  A. Feltz,et al.  Glass formation and properties of chalcogenide systems XXVI: Permittivity and the structure of glasses AsxSe1−x and GexSe1−x , 1983 .

[74]  M. Thorpe Bulk and surface floppy modes , 1995 .

[75]  D. Miracle,et al.  A topological basis for bulk glass formation , 2007 .

[76]  C. Angell,et al.  Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg , 1982 .

[77]  L. Larini,et al.  Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers , 2008 .

[78]  P. Boolchand,et al.  Direct Evidence for Stiffness Threshold in Chalcogenide Glasses , 1997 .