Thickness Control of BiOIO3 Enables Polarization Enhancement To Promote Carrier Separation and Pyro-PEC Performance

[1]  Bin Wang,et al.  Hydrogen-Bond Network Promotes Water Splitting on the TiO2 Surface. , 2022, Journal of the American Chemical Society.

[2]  L. Mascaro,et al.  Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes , 2022, Journal of Energy Chemistry.

[3]  Pengjie Liu,et al.  Synergy Promotion of Elemental Doping and Oxygen Vacancies in Fe2O3 Nanorods for Photoelectrochemical Water Splitting , 2022, ACS Applied Nano Materials.

[4]  M. Grätzel,et al.  Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23% , 2022, eScience.

[5]  S. Dunn,et al.  High Efficiency Water Splitting using Ultrasound Coupled to a BaTiO3 Nanofluid , 2022, Advanced science.

[6]  Yongfeng Qi,et al.  Enhanced photocatalytic activity on elemental mercury over pink BiOIO3 nanosheets with abundant oxygen vacancies , 2022, Korean Journal of Chemical Engineering.

[7]  Thi-Nhan Nguyen,et al.  Piezophotodegradation and Piezophotoelectrochemical Water Splitting of Hydrothermally Grown BiFeO3 Films with Various Morphologies , 2022, Journal of Environmental Chemical Engineering.

[8]  Yong Pei,et al.  Activating a TiO2/BiVO4 Film for Photoelectrochemical Water Splitting by Constructing a Heterojunction Interface with a Uniform Crystal Plane Orientation. , 2021, ACS applied materials & interfaces.

[9]  Jian Liu,et al.  In Situ Electronic Redistribution Tuning of NiCo2S4 Nanosheets for Enhanced Electrocatalysis , 2021, Advanced Functional Materials.

[10]  Zhifeng Liu,et al.  Piezoelectric polarization assisted WO3/CdS photoanode improved carrier separation efficiency via CdS phase regulation , 2021, International Journal of Hydrogen Energy.

[11]  Meng Li,et al.  Smelting recrystallization of CsPbBrI2 perovskites for indoor and outdoor photovoltaics , 2021, eScience.

[12]  H. Yan,et al.  Multi elements substituted Aurivillius phase relaxor ferroelectrics using high entropy design concept , 2021 .

[13]  J. Klemeš,et al.  Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities , 2021, Applied Energy.

[14]  Hongwei Huang,et al.  Pyroelectric catalysis , 2020, Nano Energy.

[15]  A. Simchi,et al.  Robust water splitting on staggered gap heterojunctions based on WO3∖WS2–MoS2 nanostructures , 2020 .

[16]  Bin Liu,et al.  Water Splitting: Conjugated Polymer Nanomaterials for Solar Water Splitting (Adv. Energy Mater. 42/2020) , 2020 .

[17]  Can Li,et al.  Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution , 2020 .

[18]  Biaobiao Zhang,et al.  Effects of molecular modifications for water splitting enhancement of BiVO4 , 2020 .

[19]  M. Entezari,et al.  Ultrasound assisted deposition of highly stable self-assembled Bi2MoO6 nanoplates with selective crystal facet engineering as photoanode. , 2020, Ultrasonics sonochemistry.

[20]  M. Tahir,et al.  Highly efficient Bi2O3/MoS2 p-n heterojunction photocatalyst for H2 evolution from water splitting , 2020 .

[21]  Yihe Zhang,et al.  Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO2 Photoreduction on BiOIO3 Single Crystals , 2020, Advanced materials.

[22]  Bog-Gi Kim,et al.  Electronic Structure and Polarization of Polar BiOIO3 , 2019, Journal of the Korean Physical Society.

[23]  Dianqing Li,et al.  Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency , 2019, International Journal of Hydrogen Energy.

[24]  R. Amal,et al.  Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting , 2019, International Journal of Hydrogen Energy.

[25]  D. Bahnemann,et al.  Iron-based photocatalytic and photoelectrocatalytic nano-structures: Facts, perspectives, and expectations , 2019, Applied Catalysis B: Environmental.

[26]  S. Bai,et al.  Effect of Mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency. , 2019, Journal of colloid and interface science.

[27]  J. S. Lee,et al.  Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting , 2019, Advanced materials.

[28]  Steve Dunn,et al.  Pyro-electrolytic water splitting for hydrogen generation , 2019, Nano Energy.

[29]  Guoqiang Tan,et al.  Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction , 2018, Applied Catalysis B: Environmental.

[30]  Zhifeng Liu,et al.  Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. , 2018, ChemSusChem.

[31]  Can Li,et al.  Photoelectrocatalytic Materials for Solar Water Splitting , 2018 .

[32]  M. Salavati‐Niasari,et al.  Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. , 2017, Journal of colloid and interface science.

[33]  Ke-Qin Zhang,et al.  One‐dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting , 2016, Advanced science.

[34]  Ling Zhang,et al.  Internal polar field enhanced H2 evolution of BiOIO3 nanoplates , 2016 .

[35]  Chao Liu,et al.  Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets , 2016 .

[36]  Yihe Zhang,et al.  Synchronously Achieving Plasmonic Bi Metal Deposition and I(-) Doping by Utilizing BiOIO3 as the Self-Sacrificing Template for High-Performance Multifunctional Applications. , 2015, ACS applied materials & interfaces.

[37]  Xiaoyan Qin,et al.  Efficient separation of photogenerated electron-hole pairs by the combination of a heterolayered structure and internal polar field in pyroelectric BiOIO3 nanoplates. , 2013, Chemistry.

[38]  P. Halasyamani,et al.  BiO(IO3): a new polar iodate that exhibits an aurivillius-type (Bi2O2)2+ layer and a large SHG response. , 2011, Journal of the American Chemical Society.

[39]  Sergei V. Kalinin,et al.  Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements , 2004 .

[40]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[41]  Zhifeng Liu,et al.  Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system , 2021 .