Nonlinear regression model generation using hyperparameter optimization

[1]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[2]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[3]  I. Zelinka,et al.  ANALYTIC PROGRAMMING – SYMBOLIC REGRESSION BY MEANS OF ARBITRARY EVOLUTIONARY ALGORITHMS , 2005 .

[4]  David J. C. MacKay,et al.  Choice of Basis for Laplace Approximation , 1998, Machine Learning.

[5]  Ilkay Ulusoy,et al.  Generative versus discriminative methods for object recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[7]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[8]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[9]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[10]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[11]  E. Vladislavleva Model-based problem solving through symbolic regression via pareto genetic programming , 2008 .

[12]  Dick den Hertog,et al.  Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming , 2009, IEEE Transactions on Evolutionary Computation.

[13]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[14]  L. Goddard Information Theory , 1962, Nature.

[15]  David J. C. MacKay,et al.  Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.

[16]  J. Hull Options, futures, and other derivative securities , 1989 .

[17]  Noelle Foreshaw Options… , 2010 .

[18]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[19]  Christopher M. Bishop,et al.  Neural networks and machine learning , 1998 .

[20]  C. Micchelli,et al.  Bayesian Regression and Classification , 2003 .

[21]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.